
Eurographics Symposium on Geometry Processing 2022
M. Campen and M. Spagnuolo
(Guest Editors)

Volume 41 (2022), Number 5

TinyAD:

Automatic Differentiation in Geometry Processing Made Simple

P. Schmidt1 J. Born1 D. Bommes2 M. Campen3 L. Kobbelt1

1RWTH Aachen University, Germany 2University of Bern, Switzerland 3Osnabrück University, Germany

Per-Element Objective Second-Order Derivatives

TinyAD

Update Step

Figure 1: TinyAD offers automatic differentiation targeted at geometry processing problems on meshes. Left: A user implements an objective

function in C++ using the Eigen library (here per triangle, but arbitrary mesh primitives or stencils can be chosen as elements). Center:

TinyAD efficiently computes second-order derivatives per element and automatically assembles the global gradient and sparse Hessian

matrix. Right: The user computes an update step (here per vertex) using a standard linear solver. Via this simplified access to derivatives, we

enable quick exploration of complex objectives in research workflows.

Abstract

Non-linear optimization is essential to many areas of geometry processing research. However, when experimenting with different

problem formulations or when prototyping new algorithms, a major practical obstacle is the need to figure out derivatives of

objective functions, especially when second-order derivatives are required. Deriving and manually implementing gradients and

Hessians is both time-consuming and error-prone. Automatic differentiation techniques address this problem, but can introduce

a diverse set of obstacles themselves, e.g. limiting the set of supported language features, imposing restrictions on a program’s

control flow, incurring a significant run time overhead, or making it hard to exploit sparsity patterns common in geometry

processing. We show that for many geometric problems, in particular on meshes, the simplest form of forward-mode automatic

differentiation is not only the most flexible, but also actually the most efficient choice. We introduce TinyAD: a lightweight

C++ library that automatically computes gradients and Hessians, in particular of sparse problems, by differentiating small

(tiny) sub-problems. Its simplicity enables easy integration; no restrictions on, e.g., looping and branching are imposed. TinyAD

provides the basic ingredients to quickly implement first and second order Newton-style solvers, allowing for flexible adjustment

of both problem formulations and solver details. By showcasing compact implementations of methods from parametrization,

deformation, and direction field design, we demonstrate how TinyAD lowers the barrier to exploring non-linear optimization

techniques. This enables not only fast prototyping of new research ideas, but also improves replicability of existing algorithms

in geometry processing. TinyAD is available to the community as an open source library.

CCS Concepts

• Mathematics of computing → Automatic differentiation; Mathematical software;

• Computing methodologies → Mesh models;

1. Introduction

Many tasks in geometry processing are, at their core, instances of
non-linear (possibly non-convex) optimization problems. Count-
less examples can be found: in mesh parametrization (e.g. for tex-
turing [PTH∗17, LKK∗18], structured remeshing [LCBK19], or
surface mapping [APL14, SBCK19]), in mesh deformation (e.g.

for animation [SdGK19], quad mesh planarization [LPW∗06],
developable surface approximation [SGC18, SAJ20], registration
[HAWG08], or surface reconstruction [NJJ21]), in direction field
design (e.g. for remeshing [JFH∗15] or fabrication [SFCBCV19]),
in numerical simulation and engineering [MGS∗21], and in many
other branches of geometry processing.

© 2022 The Author(s).
Computer Graphics Forum published by Eurographics - The European Association for Computer
Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0002-8917-3674
https://orcid.org/0000-0003-3707-4102
https://orcid.org/0000-0002-3190-1341
https://orcid.org/0000-0003-2340-3462
https://orcid.org/0000-0002-7880-9470

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

Research in these areas often involves (1) formulating the right
optimization problem, (2) developing a suitable solution scheme,
and (3) implementing a working prototype. These steps are typ-
ically interdependent, need to be iterated, and are—more often
than not—driven by working around technical restrictions. Allow-
ing flexible prototyping (e.g. to be able to quickly try different ob-
jective functions and solver details) is an ongoing effort and can
greatly influence the success of research endeavors.

A major practical roadblock in non-linear optimization is finding
and implementing the derivatives of an objective function, in par-
ticular second-order derivatives. Even though they can provide a
significant advantage in optimization, second-order derivatives are
often avoided as they can be excessively tedious to compute. In
the worst case, research ideas remain unexplored as finding, imple-
menting, and debugging derivatives is just too time-consuming.

The classical approach to differentiation is by analytically deriv-
ing expressions for the gradient and Hessian on paper and manually
implementing them in code [Sch19]. Even for functions of moder-
ate complexity, this often turns out to be a slow and error-prone
process: researchers need to verify their derivations, debug their
code, and start from scratch when the objective function changes.

A slightly more automated approach is symbolic differentia-
tion and code generation in computer algebra systems like Maple,
Mathematica, Matlab or SymPy [MSP∗17]. While this automates
the main differentiation workload, it is still a two-step process that
requires switching between different software ecosystems, leading
to manual intervention or additional automation efforts. Moreover,
symbolic differentiation of complex objectives tends to produce ex-
cessively large expressions that are slow to generate and to compile.

Many of these drawbacks do not apply when performing auto-
matic differentiation directly in the target language, e.g. via op-
erator overloading mechanisms in C++. However, existing solu-
tions can still come with a number of challenges, for example
when they limit the subset of available language features, incur
a run time overhead, or restrict a program’s control flow. In par-
ticular, it is common to not allow dynamic loops or branching
in the differentiated code [DSJ∗22]. This can be worked around
by explicitly enumerating and differentiating all possible branches
(which quickly becomes infeasible) or by differentiating only the
current branch at run time [WG12] (which can be expensive). Both
cases induce added implementation effort. Furthermore, many au-
tomatic differentiation libraries support first-order derivatives only
[HP13, Hog14, Jak19, Yan21], are difficult to integrate, or add a
significant run time overhead. Moreover, direct support for mesh-
based problems is a rare feature, meaning that their typical sparsity
patterns have to either be inferred from a computation graph (often
slow) or managed manually (causing extra boilerplate code).

Navigating these restrictions and finding the right automatic dif-
ferentiation package can be a daunting task. General-purpose li-
braries can be heavy-weight and difficult to use, while too spe-
cific libraries from other fields might be challenging to repurpose
for geometry processing tasks. This is in stark contrast to adja-
cent fields such as machine learning, where problem-specific au-
tomatic differentiation libraries (e.g. PyTorch or TensorFlow) have
been contributing enormously to the tremendous progress of this re-
search area. We argue that simple and easy-to-integrate automatic

1 // Read disk-topology mesh using OpenMesh

2 OpenMesh::TriMesh mesh = read_mesh("armadillo_disk.obj");

3

4 // Set up function with 2D vertex positions as variables.

5 auto func = TinyAD::scalar_function<2>(mesh.vertices());

6

7 // Add objective term per triangle. Each connecting 3 vertices.

8 func.add_elements<3>(mesh.faces(), [&] (auto& element)

9 {

10 // Element is evaluated with either double or TinyAD::Double<6>

11 using T = TINYAD_SCALAR_TYPE(element);

12

13 // Get variable 2D vertex positions of triangle t

14 OpenMesh::SmartFaceHandle t = element.handle;

15 Eigen::Vector2<T> a = element.variables(t.halfedge().to());

16 Eigen::Vector2<T> b = element.variables(t.halfedge().next().to());

17 Eigen::Vector2<T> c = element.variables(t.halfedge().from());

18

19 // Triangle flipped?

20 Eigen::Matrix2<T> M = col_mat(b - a, c - a);

21 if (M.determinant() <= 0.0)

22 return (T)INFINITY;

23

24 // Get constant 2D rest shape and area of triangle t

25 Eigen::Matrix2d Mr = mesh.property(rest_shapes, t);

26 double A = 0.5 * Mr.determinant();

27

28 // Compute symmetric Dirichlet energy

29 Eigen::Matrix2<T> J = M * Mr.inverse();

30 return A * (J.squaredNorm() + J.inverse().squaredNorm());

31 });

32

33 // Projected Newton

34 Eigen::VectorXd x = tutte_embedding(mesh);

35 for (int i = 0; i < max_iters; ++i)

36 {

37 auto [f, g, H_proj] = func.eval_with_hessian_proj(x);

38 Eigen::VectorXd d = TinyAD::newton_direction(g, H_proj);

39 if (TinyAD::newton_decrement(d, g) < eps)

40 break;

41 x = TinyAD::line_search(x, d, f, g, func);

42 }

Figure 2: Fully functional implementation of a mesh parametriza-

tion algorithm using TinyAD, optimizing the symmetric Dirichlet

energy via a projected-Newton method.

differentiation tools, tailored to typical optimization problems on
meshes, can also vastly accelerate research in geometry processing.
Such tools not only lower the barrier to exploring novel ideas and
formulations, but also improve replicability of existing works by
reducing re-implementation effort, as we demonstrate in Section 4.

Once derivatives are available, the task of finding a suitable opti-
mization algorithm remains. Efficient non-linear (and in particular
non-convex) optimization tends to require problem-specific solu-
tion strategies that are not always provided by black-box solvers.
Examples of custom solver details implemented in geometry pro-
cessing works include manifold optimization [RS15], problem-
specific pre-conditioning [KGL16, CBSS17, SBCK19], varying
problem size [JSP17], varying variable representation [SCBK20],
varying objective functions [LYNF18], alternating optimization
[ESBC19], derivative manipulation and transport [SCBK20], cus-
tom line search strategies (e.g. involving mesh modifications)
[CCS∗21, SCBK20], and many more. Common optimization li-
braries (e.g. IPOPT [WB06]) follow a declarative paradigm, that

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

is, they strive for abstraction between a user-defined problem de-
scription and a black-box solver. However, this may raise the bar-
rier to quickly explore different solver modifications. In contrast,
we demonstrate that, once derivatives are available, it is relatively
straightforward to manually implement basic Newton-style solvers,
which can then form the basis for various modifications, such as
the ones listed above. Together with automatic differentiation, this
approach enables quick prototyping and allows for flexible adjust-
ment of both the problem formulation and solver details.

1.1. Contribution

In this work, we

• show that the simplest form of forward-mode automatic differ-
entiation is the one best suited for geometry processing tasks,

• introduce TinyAD1, a lightweight and fast header-only C++ li-
brary for second-order automatic differentiation on top of Eigen,

• provide an interface to model the typical sparsity patterns of
mesh-based problems, which is easy to use with a variety of dif-
ferent mesh representations and libraries (e.g. OpenMesh, Ge-
ometry Central, polymesh, or libigl-style matrices),

• demonstrate how to produce compact implementations of a num-
ber of well-known non-linear geometry processing methods.

TinyAD performs per-element automatic differentiation in forward
mode. It depends only on the Eigen library [GJ∗10], supports ar-
bitrary looping and branching, and draws its run time performance
from differentiation at compile time. Note that we do not math-
ematically or algorithmically introduce a new type of automatic
differentiation, but a practical realization tailored towards geomet-
ric problems. Similarly, we do not propose new optimization al-
gorithms, but provide the tools necessary to quickly implement
such methods. Using examples from surface mesh parametriza-
tion (Section 4.1), volume mesh deformation (Section 4.2), frame
field design (Section 4.3), and manifold optimization (Section 4.4),
we demonstrate how C++ implementations of non-linear geometry
processing methods can look very similar to their pseudocode or
formulas in a paper.

2. Background & Related Work

For context, we first recap the main steps of unconstrained non-
linear (non-convex) optimization in the style of Newton’s method.
We then give an overview over different types of automatic differ-
entiation and their implementations.

2.1. Non-linear Continuous Optimization

Consider a continuous objective function f : Rn → R to be min-
imized with respect to a variable vector x ∈ R

n. The first- and
second-order derivatives of f (x) are the gradient g(x) ∈R

n (vector
of partial derivatives ∂ f/∂xi) and the Hessian H(x) ∈ R

n×n (sym-
metric matrix of partial derivatives ∂2 f/∂xi∂x j).

Descent methods start from an initial point x and then iteratively
perform update steps x← x+ sd that strictly decrease the objective

1 https://github.com/patr-schm/TinyAD

value. A descent direction d∈Rn can be found by stepping towards
the minimum of a quadratic approximation of f around the current
point x, via the linear system Hd =−g (Newton’s method). If f is
non-convex at x, H needs to be replaced by a positive-definite ma-
trix H+, obtained e.g. via a modification of H (projected-Newton’s
method). The step size s ∈ R

>0 is chosen per iteration by sam-
pling successively smaller steps until f (x + sd) yields sufficient
decrease in the objective value (backtracking line search). Itera-
tions stop when a convergence criterion is fulfilled, e.g. when the
Newton decrement

√

−dTg falls below a threshold. Note that for
some x ∈ R

n, f (x) needs to be evaluated together with its deriva-
tives g(x) and H(x) (once per iteration) and at some x without its
derivatives (once per sample during the line search). For a broader
overview and a more thorough treatment of continuous optimiza-
tion algorithms see e.g. [BV04] or [NW06].

2.2. Automatic Differentiation of Objective Functions

Given a fixed x ∈ R
n and an implementation of f : Rn → R,

the task of automatic differentiation is to compute g(x) ∈ R
n and

H(x) ∈ R
n×n. We give a short overview of different approaches to

this problem and refer to textbooks [GW08, Nau11] or recent re-
ports [Mar19] and tutorials [Sch19] for a broader perspective.

An execution of f can be viewed via its computation graph: A
directed acyclic graph, in which each node is a scalar value existing
at a certain time during program execution (Figure 3). There are n

input nodes with values xi, any number of intermediate nodes, and
an output node with value f (x). The set of incoming edges at a
node corresponds to an operation producing the node’s value based
on its arguments. A program execution traverses this graph in a
topological ordering, i.e., it performs a single forward pass. Note
that in the presence of control flow statements (e.g. branching or
loops) the structure of the computation graph itself depends on x.

Automatic differentiation techniques can be seen as attaching
additional derivative information to the nodes of the computation
graph, such that, after one or multiple passes through the graph,
the sought derivatives can be read off. We categorize different ap-
proaches along three criteria: (1) the mode of differentiation (for-
ward vs. backward), (2) the time of differentiation (before compi-
lation, at compile time, at run time), and (3) whether or not the
computation graph needs to be explicitly represented.

Figure 3: Computation graph evaluating acos(uTv) with u,v∈R3

based on the variable vector x ∈ R
6. Forward-mode differentiation

attaches to each node its derivatives with respect to the input x.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/patr-schm/TinyAD

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

Forward vs. Backward Mode. In forward mode, each node car-
ries the derivatives of its value with respect to all input variables.
That is, a full gradient vector (and Hessian matrix) is attached to
each scalar. As the derivatives of a node can be computed from the
derivatives of its predecessors, only a single forward pass is neces-
sary, just as in the original program execution. The final derivatives
can then be read from the output node. In contrast, backward mode

attaches a single scalar to each node: the derivative of the output
value f (x) with respect to that node. Since, by the chain rule, this
derivative depends on the derivatives of its successor nodes, two
passes through the graph are necessary: a forward pass computing
the value at each node, followed by a backward pass computing the
derivative at each node. Finally, the full gradient vector can be read
from the scalar derivatives stored at the input nodes. Second-order
derivatives require an additional (e.g. forward) pass [GW08, Ch. 5].

In the case of a scalar objective, which we consider here, asymp-
totic run time analysis suggests that backward mode is more effi-
cient than forward mode. Already for first-order differentiation, the
time complexity of forward mode grows quadratically in the num-
ber of inputs, while only linearly in backward mode. This trend per-
sists in the second-order case (cubic vs. quadratic) [Nau11, Ch. 3].
However, in practice, other aspects can outweigh these asymptotic
considerations for a sufficiently large range of input dimensions, as
we demonstrate in Figure 4. If, in addition, a large problem can be
split into small sub-problems with few inputs, as is often the case
in geometry processing, we show that forward mode can in fact
perform better, while at the same time avoiding the added imple-
mentation complexity of backward mode (cf. Section 4).

Differentiation Time. Implementing automatic differentiation via
source code transformation involves parsing the original source
code, symbolically computing derivative expressions, and finally
generating derivative code. While this method offers full poten-
tial for the optimization of derivative expressions, it is challenging
to seamlessly integrate into programming environments [DSJ∗22].
Computing derivatives at compile time, e.g. via C++ operator over-
loading or templates, hands the tasks of generating and optimizing
derivative code over to the compiler. Alternatively, operator over-
loading can be used to perform differentiation at run time. This
offers additional flexibility, e.g. to dynamically track a computa-
tion graph, but rules out many performance optimizations as the
derivative code is not fully known to the compiler [Sch19].

Computation Graph. Backward-mode differentiation generally
requires an explicit representation of the computation graph. This
could be in form of an abstract syntax tree built by a parser
[DSJ∗22], a tree built during compile time via expression tem-
plates [Hog14], or a tape recorded from a program execution at
run time [WG12]. Such explicitly represented computation graphs
are often constructed once and then re-used for different inputs x.
However, in the presence of variable control flow, i.e. looping and
branching based on x, the computation graph can change between
function executions and needs to be carefully updated or rebuilt.
This often translates into either implementation restrictions on the
function f or explicit management of possible branching cases. In
contrast, some forward-mode approaches are possible without an
explicit computation graph, as the control flow of the original pro-
gram matches the control flow required for differentiation. In other

10 20 30 40 50 60 70 80

Number of variables k

0.0

0.2

0.4

0.6

0.8

1.0

M
il

li
se

co
n

d
s

Evaluate gradient and Hessian of ‖x‖ with x ∈ R
k

TinyAD (forward)

ADOL-C (backward)

Figure 4: While, with respect to the number of inputs, backward-

mode is asymptotically faster than forward-mode, there is a sig-

nificant range of small problem sizes for which forward-mode out-

performs backward-mode in practice. Here we compute gradients

and Hessians of a simple expression (the L2 vector norm). For typ-

ical sizes that appear in our application examples, e.g. k = 6 and

k = 12, TinyAD (forward) is faster than ADOL-C (backward) by a

factor of 73 and 49, respectively.

words, instead of tracking derivative expressions, it is sufficient to
track derivative values depending on the current input x. In such a
setting, variable control flow is naturally supported.

2.3. Automatic Differentiation Software

We focus on methods that support second-order derivatives and
compare our approach to three representatives: (1) A concise imple-
mentation of forward-mode compile time differentiation, which is
part of the Mitsuba renderer [Jak10]. (2) ADOL-C [WG12], a well-
established automatic differentiation package in C++ that performs
backward-mode differentiation at run time by recording computa-
tions on a tape. Active and passive variables, differentiable code
sections, and re-taping in case of branching have to be explicitly
handled by the user. (3) ACORNS [DSJ∗22], a python tool for
code transformation in forward or backward mode, which supports
a subset of C99 code. It can, with some effort, be integrated into
a C++ compiler toolchain, but cannot perform dynamic branching
or handle passive variables. The generated code can become pro-
hibitively large in some cases, cf. [DSJ∗22, Sec. 3.4].

Many more automatic differentiation packages exist, but often
support first-order derivatives only: e.g. Adept [Hog14] (backward,
compile time), FastAD [Yan21] (backward, compile time), Enoki
[Jak19] (forward or backward, run time), Tapenade [HP13] (for-
ward or backward, code transformation). In the context of ma-
chine learning, libraries such as PyTorch [PGM∗19] or Tensor-
Flow [AAB∗16] (both forward or backward, run time) target com-
putations involving large and typically dense tensors, with a focus
on first-order derivatives (although second-order is possible).

Fewer implementations explicitly handle the case of sparse Hes-
sians. ADOL-C [WG12] supports automatic inference of spar-
sity patterns by solving a graph coloring problem at run time. A
recently-described code generator [HTS∗22] supports automatic
detection of per-element computations and offers sparse second-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

order differentiation in backward mode. The authors report striking
run time performance, at the cost of limited branching capabilities
and a more involved compilation procedure.

Our approach to the dense case is conceptually closest to the one
by [Jak10], as we perform compile-time forward-mode differentia-
tion without an explicit computation graph. In the sparse case, we
provide a natural interface to express problems via local stencils,
removing the need to algorithmically recover sparsity patterns after
the fact. Our interface shows similarities to domain-specific lan-
guages for sparse computations, such as [KKRK∗16], but in con-
trast stays purely within the realm of the C++ language.

3. TinyAD

We first discuss our second-order automatic differentiation ap-
proach for dense, low-dimensional functions f : Rk → R (Sec-
tion 3.1) and then introduce our interface for the element-wise dif-
ferentiation of large but sparse problems f : Rn→ R (Section 3.2).

3.1. Differentiating Dense Problems

As outlined in Section 2.2, forward-mode differentiation can be
achieved by storing at each node of the computation graph not only
its value v ∈ R but also its derivatives with respect to all inputs
x ∈ R

k. We also call such a node an active scalar, defined as the
tuple (v,g,H) with

g =
∂v

∂x
∈ R

k and H =
∂2v

∂x2 ∈ R
k×k.

An operation o can access the gradients and Hessians of its argu-
ments and needs to produce the gradient and Hessian of its result.
E.g. for a binary operation o(a,b) = c we additionally have to pro-
vide expressions for ∂o/∂x and ∂2o/∂x2 to define the map

((va,ga,Ha),(vb,gb,Hb)) 7→ (vc,gc,Hc).

Depending on the operation, this boils down to e.g. applying the
first- and second-order chain rule, product rule, quotient rule, etc.
The k source nodes of the graph are initialized with (xi,ei,0), where
ei ∈ R

k is the one-hot vector with 1 in the i-th component (since
∂xi/∂x = ei) and 0 ∈ R

k×k is the zero-matrix.

We implement active scalars (v,g,H) in C++ by providing the
type TinyAD::Double as a replacement for double. Each instance
of this type carries its own gradient and dense Hessian. We fur-
ther implement first- and second order derivatives via C++ operator
overloading for a broad set of operations (elementary operations,
powers, logarithms, trigonometric functions, hyperbolic functions,
complex arithmetic, ...), which can also easily be extended by users.

Usage. In the simplest scenario, a user chooses the number of vari-
ables k, assigns an index i to each variable, and then performs any
number of computations using the available operators:

using ADouble = TinyAD::Double<2>; // Scalar type w.r.t. k = 2 variables

ADouble x0(3.5, 0); // Variable with index 0

ADouble x1(5.0, 1); // Variable with index 1

ADouble z = -log(0.5 * sqrt(x0 * x0 + x1 * x1));

Derivatives can be read via z.grad and z.Hess from any active
scalar at any time, not only from the final result.

1 // Choose autodiff scalar type for 3 variables

2 using ADouble = TinyAD::Double<3>;

3

4 // Init a 3D vector of active and a 3D vector of passive variables

5 Eigen::Vector3<ADouble> x = ADouble::make_active({0.0, -1.0, 1.0});

6 Eigen::Vector3<double> y(2.0, 3.0, 5.0);

7

8 // Compute angle and retrieve gradient and Hessian w.r.t. x

9 ADouble angle = acos(x.dot(y) / (x.norm() * y.norm()));

10 Eigen::Vector3d g = angle.grad;

11 Eigen::Matrix3d H = angle.Hess;

Figure 5: Computing derivatives of the angle between a pair of 3D

vectors (one variable, one constant). Active scalars are used inside

Eigen types and freely mixed with passive scalars. This gives access

to a large number of Eigen’s vector and matrix operations, which

are differentiated by TinyAD on a per-scalar level.

TinyAD is natively integrated with the Eigen library [GJ∗10].
Derivatives are represented as Eigen matrices and TinyAD::Double

itself can be used as the scalar type within Eigen matrices and vec-
tors. This automatically gives access to differentiating common ma-
trix and vector operations (products, determinants, normalization,
inversion, etc.). Furthermore, active (TinyAD::Double) and passive
(double) types can be freely combined in expressions, see Figure 5.

Control Flow. Because no explicit representation of the computa-
tion graph needs to be tracked, unrestricted value-dependent con-
trol flow is possible. This allows general run-time branching and
loop statements based on variables. In Figure 6, we showcase an
example that can only be easily implemented due to this flexibility:
We evaluate piecewise-linear distortion of a triangulated polygon,
whose triangulation connectivity depends on the distortion measure
itself. That is, the objective function first chooses the optimal poly-
gon triangulation before computing its distortion in a differentiable
way. In our single-pass forward-mode setting this is straightforward
to implement, whereas in any backward-mode or expression-based
environment, this kind of dynamic branching would only be possi-
ble at a higher (implementation or run time) cost.

Performance. The run time performance of TinyAD stems from
the fact that all derivative expressions are known at compile
time. Derivative values inside TinyAD::Double are represented via
statically-sized matrices and are subject to code vectorization by
Eigen. Moreover, all derivative expressions (involving values, gra-
dients and Hessians) are available for compiler inlining. That is, the
C++ compiler has access to all these computations at once and au-
tomatically performs major optimizations. Even though backward-
mode differentiation is known to be faster for large k, these practi-
cal arguments outweigh asymptotic considerations for a sufficient
range of k (as we also demonstrate in Figure 4 and Figure 7).

With the tools provided so far it is already possible to differ-
entiate and optimize dense problems of small to moderate size or
to integrate TinyAD into other systems that require differentiation
of small sub-problems. Besides TinyAD::Double<k>, any standard
floating point type can be used via e.g. TinyAD::Scalar<k, float>,
based on precision and run time requirements. If only first-
order derivatives are required, a gradient-only mode is avail-
able via TinyAD::Scalar<k, double, false>. The restriction of
having to choose k at compile time can be lifted by using
TinyAD::Scalar<Eigen::Dynamic, double> at a run time cost.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

1 // Two variables per polygon vertex

2 constexpr int k = 2 * n_vertices;

3

4 // Objective function to be evaluated with TinyAD::Double<k> or double

5 template <typename T> T objective(const Eigen::Vector<T, k>& _x)

6 {

7 // Compute optimal triangulation w.r.t. current x

8 Eigen::MatrixXi F = optimal_triangulation(_x);

9

10 // Compute objective value w.r.t. optimal triangulation

11 T f = 0.0;

12 for (int i = 0; i < (int)F.rows(); ++i)

13 f += triangle_distortion(_x, F(i, 0), F(i, 1), F(i, 2));

14 f += penalty(_x);

15

16 return f;

17 }

18

19 // Init vector x with 2D vertex positions

20 Eigen::Vector<double, k> x = ...

21

22 // Evaluate objective with or without derivatives

23 TinyAD::Double<k> f_active = objective(TinyAD::make_active(x));

24 double f_passive = objective(x);

R
e
s
t

S
ta

te
D

e
fo

r
m

e
d

Figure 6: Polygon deformation with optimal triangulation. The

objective function dynamically chooses the least-distorted triangu-

lation among all possible triangulations. Our forward-mode setting

without explicit computation graph allows a very compact imple-

mentation of such value-dependent control flow. Backward-mode

approaches, in contrast, would either require to only differentiate

the per-triangle case (adding the burden of manual re-indexing)

or to re-build the computation graph in each evaluation (adding a

run-time overhead). Here, we also show how to use C++ templates

to allow function evaluations with and without derivatives.

3.2. Differentiating Sparse Problems

In many optimization problems on meshes, a scalar-valued objec-
tive function f : Rn → R is partially separable [NW06, Ch. 7.4],
i.e., it is a sum of element functions

f (x) = ∑
j

f j(x j)

where each f j only depends on k ≤ n entries of x. Per element
j, we write the k-dimensional sub-vector of accessed variables as
x j = I jx, where I j ∈ {0,1}

k×n removes the unused entries from x.

As differentiation distributes over sums, low-dimensional gradi-
ents g j ∈ R

k and Hessians H j ∈ R
k×k can be efficiently computed

per element (Section 3.1). These are then assembled to form the
full n-dimensional gradient and the (usually sparse) Hessian of f

via the index mapping ITj :

g = ∑
j

I
T
j g j and H = ∑

j

I
T
j H jI j.

We provide the class ScalarFunction to model and differentiate
such functions. In particular, we offer a convenient way of express-

ing the sparsity pattern of a problem without having to maintain
the typical boilerplate code of an explicit index mapping. The user
supplies a set of variable handles, a set of element handles, and
the code to be executed for each element. By accessing a number
of variable handles in this code, the user fully defines all element-
variable relationships and as such the problem’s sparsity pattern.

Depending on the problem, variables and elements might corre-
spond to mesh primitives (e.g. vertices, edges, faces) or to more
complex entities (e.g. edge pairs, hinges, patches, etc...). For exam-
ple, in a planar parametrization problem the variable handles are
chosen to be the mesh vertices, with a variable dimension of 2. That
is, each vertex identifies 2 scalar variables (its u,v-coordinates).
The objective could be a distortion energy summed over triangle
elements, with an element valence of 3, i.e., each triangle depends
on 3 vertices, and thus on k = 6 scalar variables.

Usage. The user constructs a function by specifying the variable
dimension and passing a list of variable handles:

auto func = TinyAD::scalar_function<2>(mesh.vertices());

Handles can be of one of various supported types from common
mesh libraries, or integers. Adding support for additional handle
types is easily possible. Next, the user decides on the maximum
element valence and passes a list of element handles as well as a
lambda function to be evaluated per element:

func.add_elements<3>(mesh.faces(), [] (auto& element) { ... });

Multiple types of objective terms can be added by calling
add_elements<>() repeatedly. Inside a per-element lambda func-
tion, variables (here vertex positions) can then be accessed via

Eigen::Vector2<T> p = element.variables(vh);

where vh is a variable handle. This function call returns a vector of
the variable dimension and records an element-variable relationship
(i.e. builds the index map I j). The scalar type T of the returned
variables will either be TinyAD::Double<k> or double, depending
on whether derivatives are to be computed or not. Passive variables,
constants, or any other kind of data can be freely accessed (via
C++ lambda captures) at any point. Finally, the user evaluates the
function at a point x by calling one of various methods

double f = func.eval(x);

auto [f, g] = func.eval_with_gradient(x);

auto [f, g, H] = func.eval_with_derivatives(x);

auto [f, g, H_proj] = func.eval_with_hessian_proj(x);

...

which return e.g. the function value f, the gradient g, the
sparse Hessian H, or its modification H_proj after elementwise
positive-definite projection. Elements are evaluated in parallel us-
ing OpenMP [DM98]. Figure 2 shows a complete usage example.

Analogously to ScalarFunction, we also provide an interface
VectorFunction for vector-valued functions f : Rn → R

m, where
each element emits a segment of the result vector instead of a sin-
gle scalar. We use this interface, for example, in Figure 9 to produce
the sparse Jacobian J ∈ R

m×n.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

3.3. Solving Non-linear Problems

With a way of computing derivatives at hand, basic Newton-style
solvers for unconstrained optimization can be implemented rather
easily. For convenience, we provide a few simple functions such
as TinyAD::newton_direction() or TinyAD::line_search() to get
started (see Figure 2, line 35–42). Alternatively, any external solver
can be used; either directly or, for example, through one of the non-
linear problem interfaces provided by CoMISo [BZK10]. TinyAD
can provide derivatives for all values of x ∈ R

n where f (x) is once
or twice differentiable. For discontinuous problems it is the respon-
sibility of the optimization algorithm to only request derivatives
where these are well-defined.

Constrained Optimization. We demonstrate the use of penalty
terms in Figure 8 and barrier terms in Figure 2, 8, 9, 11. Advanced
solvers for problems with non-linear or non-convex constraints
(e.g. IPOPT [WB06]) require derivatives of a constraint function
c : Rn → R

m, e.g., in form of the (sparse) Jacobian J ∈ R
m×n,

which TinyAD can easily deliver via its VectorFunction interface.

4. Applications and Comparison

In the following, we demonstrate the practical value of TinyAD
in four application scenarios. We recap basic usage along a
parametrization example (Section 4.1) and compare run time per-
formance to other automatic differentiation approaches. A 3D de-
formation example (Section 4.2) illustrates working with tetrahe-
dral meshes as well as quick exploration of different energy formu-
lations. In Section 4.3 we replicate a complex non-linear method
for frame field optimization, in very few lines of code, and compare
against a reference implementation. Finally, Section 4.4 demon-
strates the flexibility to implement custom optimization schemes at
an example from manifold optimization. Run time evaluation was
performed on a desktop computer with Intel Core i7-8700 CPU.

Mesh Data Structures. In Section 4.1 we represent meshes via
the OpenMesh [BSBK02] library and in all other examples via a
matrix format in the style of libigl [JP∗18]. Further code exam-
ples using other libraries, e.g. GeometryCentral [SC∗19] or poly-
mesh [Tre21], are also available2. Support for additional mesh rep-
resentations can easily be added by users.

4.1. Surface Mesh Parametrization

As a first complete application example, we show how to optimize
mapping distortion of a planar mesh parametrization in Figure 2.
Given a triangle meshM = (V,T) embedded in R

3, the variable
vector x∈R

2|V| assigns to each vertex a position in R
2, thus defin-

ing a piecewise linear map to the plane. Per-triangle distortion is
measured via the symmetric Dirichlet energy

f (x) = ∑
t∈T

areat

(

‖Jt(x)‖
2 +‖Jt(x)

−1‖2
)

with Jt =
[

b−a c−a
][

br−ar cr−ar

]−1
∈ R

2×2 being the
map Jacobian between a rest-pose triangle ar,br,cr in a tangent
space ofM and a variable triangle a,b,c in the plane.

2 https://github.com/patr-schm/TinyAD-Examples

0 50 100 150 200 250

Seconds

10
2

10
3

10
4

O
b

je
ct

iv
e

Planar Parametrization

TinyAD (forward, parallel x4)

TinyAD (forward)

Mitsuba (forward)

ACORNS (forward)

ACORNS (backward)

ADOL-C (backward)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Average Seconds per Iteration

TinyAD (forward, parallel x4)

TinyAD (forward)

Mitsuba (forward)

ACORNS (forward)

ACORNS (backward)

ADOL-C (backward)

Derivatives

Solve

Line Search

Figure 7: Run time performance of the parametrization algorithm

in Figure 2 on a mesh with 319k triangles. Top: Objective value

over wall clock time. TinyAD is slightly faster than other forward-

mode approaches and significantly faster than backward-mode al-

ternatives in a single-threaded comparison. Evaluating the set of

elements in parallel gives an additional speedup. Bottom: Using

TinyAD, the total runtime per iteration is dominated by the linear

solve.

Implementation. In Figure 2 we represent a triangle mesh using
the OpenMesh library. A ScalarFunction is created by choosing
the variable dimension 2 and passing a list of OpenMesh vertex
handles. Triangles with element valence 3 are added by passing
a range of OpenMesh face handles and a lambda function. Inside
this function, element.handle provides access to the current trian-
gle (an OpenMesh face handle), and the variable vertex positions
a,b,c ∈R

2 are accessed via element.variables(...), which takes
an OpenMesh vertex handle as argument. Constant information
present in the surrounding scope, e.g. mesh connectivity or the (pre-
computed) rest shapes of triangles, is simply accessed via lambda
captures without any restrictions. Vectors and matrices containing
active variables are based on the type T, which is instantiated as
TinyAD::Double<6> when computing derivatives and as double dur-
ing the line search. Run time branching is performed to check if a
triangle is flipped or degenerate. The symmetric Dirichlet energy
is computed using matrix operations provided by the Eigen library,
which in turn invoke per-scalar differentiation by TinyAD. An ini-
tial parametrization x is computed via Tutte’s embedding and then
optimized via a projected-Newton solver implemented by the user.

While more specialized optimization algorithms for this prob-
lem exist, a projected-Newton implementation is a standard base-
line for the evaluation of more advanced parametrization meth-
ods [RPPSH17, SPSH∗17]. Similarly, it can also be the basis for
more complex problem settings, e.g. with non-injective initializa-
tions [DAZ∗20], more involved objectives [SBCK19], or alternat-
ing discrete-continuous optimization schemes [LKK∗18].

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/patr-schm/TinyAD-Examples

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

In
it

C
o

n
st

ra
in

ts

Derivatives Solve Line Search

E
x

p
.

S
D

S
D

A
M

IP
S

C
o

n
f.

 A
M

IP
S

0.0 0.2 0.4 0.6 0.8 1.0

Average Seconds per Iteration

SD

Exp. SD

AMIPS

Conf. AMIPS

Figure 8: Implementation of a 3D tetrahedral mesh deformation algorithm. Experimenting with various deformation energies is extremely

simple (highlighted box). Soft position constraints are added via a penalty term (top center). A hand-crafted projected-Newton implementation

uses a conjugate gradient solver for improved performance (center). Run time is dominated by the linear solve (bottom center).

Comparison. In Figure 7, we compare the run time of Fig-
ure 2 to alternative implementations in which we instead per-
form the dense per-element differentiation using Mitsuba [Jak10],
ACORNS [DSJ∗22], and ADOL-C [WG12]. All variants yield
the same solution (up to numerics) and spend equal amounts of
time for linear solve and line search. Timings of the differentia-
tion step show that for this problem (involving 6× 6 Hessians),
forward-mode (TinyAD, Mitsuba, ACORNS) significantly outper-
forms backward-mode (ACORNS, ADOL-C). TinyAD achieves
marginally better performance than Mitsuba and ACORNS at sig-
nificantly reduced implementation effort (cf. Figure 2). While in
the ACORNS backward-mode implementation all derivative ex-
pressions are known at compile time, the ADOL-C implementa-
tion records a tape of the per-element computation (once) and re-
plays it (per triangle, per iteration) at run time, explaining the addi-
tional performance difference. We perform comparisons in single-
threaded mode and additionally show the (default) parallel version
of TinyAD for practical reference.

4.2. Volume Mesh Deformation

Similarly, we show how to deform a tetrahedral mesh M =
(V,T) in R

3 with respect to position constraints. Based on
the per-tetrahedron Jacobian J ∈ R

3×3, we implement differ-
ent elastic deformation energies: e.g. the (exponential) symmet-

ric Dirichlet energy exp
(

‖J‖2 +‖J−1‖2
)

, the AMIPS energy

exp
(

1
2

(

‖J‖2

det J + 1
2

(

detJ+detJ−1
)))

, and the conformal AMIPS

energy ‖J‖2

det(J)
2
3

. Manually implementing the 12× 12 Hessians of

these energies (even with the aid of symbolic differentiation tools)
is a non-trivial and error-prone task. Here, we are able to write each

of these in a single line (see Figure 8). Additionally, we formulate
position constraints for some vertices by adding soft penalty terms.

In this example, the tetrahedral mesh is represented by a “libigl-
style” |V| × 3 matrix of vertex positions and a |T | × 4 matrix
of vertex indices forming one tetrahedron per row. Variable and
element handles are row indices of these matrices, created via
TinyAD::range(num_handles).

We again optimize this problem via projected-Newton, this time
using a (diagonally-preconditioned) conjugate gradient solver for
the linear system. In Figure 8, we run our implementation on an ex-
ample input from [RPPSH17]. For all energies the algorithm con-
verges within 5 to 15 iterations, and the per-iteration run time is
dominated by the linear solve.

4.3. Frame Field Optimization

We provide a compact implementation of the Integrable PolyVector
Fields algorithm for frame field optimization [DVPSH15]. Given
an input frame field (two tangent vectors per face) on a trian-
gle mesh, the method performs a heavy non-linear optimization to
guide the field towards a nearby curl-free (and thus locally inte-
grable) field. The formulation avoids explicit matchings between
vectors in adjacent triangles by encoding them as the roots of com-
plex polynomials.

The variable vector x ∈ R
n, with n = 4|T |, represents two tan-

gent vectors α,β ∈ C per triangle. Different per-edge objective
terms promote smoothness, curl reduction, and order-preservation
among adjacent triangles. In addition, per-face terms provide regu-
larization and injectivity guarantees. The final objective function is

a sum of squared residuals f (x) = ∑
m
j=1

(

r j(x)
)2

and is optimized
via Gauss-Newton iterations based on the residual vector r ∈ R

m

and its Jacobian J = ∂r/∂x ∈ R
m×n.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

Figure 9: Complete implementation of the objective function of Integrable PolyVector Fields [DVPSH15]. Being able to express per-edge

terms (left) and per-face terms (right) directly in complex arithmetic and without much boilerplate code or index mapping, the implementation

looks just like the formulas in the original paper (center). Here, we use TinyAD::VectorFunction to emit multiple residual terms per element.

In
p

u
t

C
u

rl
-F

re
e

0 2 4 6 8 10 12 14 16
Seconds

10
2

10
3

10
4

O
b

je
ct

iv
e

TinyAD (serial)

Reference (serial)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Average Seconds per Iteration

TinyAD

Reference

Derivatives

Solve

Line Search

10
-6

10
-2

10
-6

10
-2

Figure 10: Results of curl reduction algorithm in Figure 9. Top:

Heat map shows the PolyCurl term before and after optimization.

Center & bottom: Our significantly simpler implementation via

TinyAD is slightly faster than the reference implementation [V∗18].

Staircase pattern in the plot is due to a weight decay scheme.

The authors of [DVPSH15] provide Matlab scripts for symbolic
differentiation of the individual terms, spelled out in real arithmetic.
In a C++ reference implementation [V∗18], significant program-
ming effort is spent on evaluating the resulting expressions as well
as assembling and updating the system matrix in each iteration.
In contrast, using TinyAD, we are able to implement the objective
function directly in C++, express terms in complex arithmetic, and
compute derivatives automatically. The resulting code in Figure 9
is very short and closely resembles the formulas in the original pa-
per [DVPSH15]. Moreover, it is self-contained, as neither writing
nor running this code depends on external (commercial) tools or
switching between software ecosystems. We are convinced that this
not only accelerates prototyping, but also fosters replicability and
reproducibility in geometry processing research.

In Figure 10 we show that the added implementation conve-
nience does not come at the cost of runtime performance. In fact,
automatic differentiation via TinyAD (serial) even outperforms the
manual implementation in each iteration. We perform the same
Gauss-Newton step and line search strategy as the reference code
and obtain the same solution (up to numerics).

4.4. Manifold Optimization

We additionally demonstrate the flexibility to address complex
problem setups with an example from manifold optimization. Here,
we optimize an injective embedding of a genus-0 triangle mesh on
the unit sphere. We enforce the constraint that each vertex stays on

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

Barrier + Dirichlet

Barrier + Dirichlet +

Barrier + Dirichlet +

0.0 0.5 1.0 1.5 2.0 2.5

Seconds

10
4

O
b

je
ct

iv
e

Manifold Optimization

Barrier + Dirichlet

+ Equator

+ North pole

Retraction Operator

Figure 11: Implementation of a manifold optimization algorithm, moving vertex positions on the unit sphere. Left: vertex trajectories are

parametrized via 2D tangent vectors under a retraction operator. Center top: Per triangle the objective function first applies the retraction

operator to its three vertices and then evaluates an energy based on 3D positions. Center bottom: After each iteration, local tangent bases

are re-centered at the new vertex positions. Right: Via little adjustments to the objective function, different behaviors can be quickly explored.

For illustration purposes we experiment with terms attracting vertices either to the equator or to the north pole.

the manifold, i.e v ∈ S2 ⊂ R
3, by parametrizing vertex trajectories

via tangent vectors, expressed in local 2D bases. A retraction opera-
tor S2×R

2→ S2 then traces vertex updates within the curved man-
ifold. After moving to a new position, each vertex receives a new
(and arbitrary) tangent space basis. Hence, while the optimization
is smooth in the vertex positions on the sphere, the interpretation of
the variable vector x ∈ R

2|V| changes in each iteration.

In Figure 11, we show how to implement an objective function
as a composition of a retraction operator with a distortion measure.
As such, it is automatically differentiated and straightforward to
use in a standard Newton-style algorithm. At the end of each itera-
tion, all vertex trajectories are applied, new tangent space bases are
computed. Implementations of different retraction operators (e.g.
via the exponential map) as well as extensions to other manifolds
(e.g. hyperbolic spaces) are possible in the same way.

5. Conclusion

We showed that simple, yet efficient, differentiation of small prob-
lems is possible when choosing forward mode (due to its straight-
forward implementation), compile time differentiation (due to its
performance), and avoiding explicit computation graphs (due to
branching flexibility). Our interface for per-element differentiation
easily transfers these advantages to sparse problems on meshes.

The performance of this approach relies on choosing a static ele-
ment size: the (maximum) number of variables per element must be
known at compile time, which is not necessarily the case for, e.g.,
per-vertex objectives with dynamic vertex degree. Still, this can of-
ten be worked around, e.g., by expressing Laplace-type functions

per edge instead of per vertex, by limiting the maximum vertex de-
gree, or potentially by switching to dynamic element size at a run
time cost.

We see future potential in providing additional derivative expres-
sions for higher-level operations. For example, matrix expressions
are by default differentiated per scalar entry, but more advanced
differentiation rules for specific expressions or decompositions can
be added by simply overloading functions with TinyAD types. For
increased performance it could be worthwhile to also incorporate
analytic derivatives of well-known distortion energies, which can
then be used as a building block in more complex objectives.

While we focused on the practically most relevant case of first-
and second-order derivatives, it is conceptually possible to extend
the same approach to e.g. third-order derivatives, by implementing
the respective differentiation rules.

Acknowledgements

We thank Anton Florey, Alexandra Heuschling, Dörte Pieper, Joe
Jakobi, and Philipp Domagalski for testing and contributing to the
development of TinyAD. This work was partially funded by the
German Research Foundation within the Gottfried Wilhelm Leib-
niz programme and partially funded under the Excellence Strat-
egy of the Federal Government and the Länder, as well as by
grant IRTG-2379 of the Deutsche Forschungsgemeinschaft (DFG).
D. Bommes has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (AlgoHex, grant agreement No
853343). Open access funding enabled and organized by Projekt
DEAL.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

References

[AAB∗16] ABADI M., AGARWAL A., BARHAM P., BREVDO E., CHEN

Z., CITRO C., CORRADO G., ET AL.: TensorFlow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint (2016). 4

[APL14] AIGERMAN N., PORANNE R., LIPMAN Y.: Lifted bijections
for low distortion surface mappings. ACM Transactions on Graphics 33,
4 (2014). 1

[BSBK02] BOTSCH M., STEINBERG S., BISCHOFF S., KOBBELT L.:
OpenMesh – a generic and efficient polygon mesh data structure. 7

[BV04] BOYD S., VANDENBERGHE L.: Convex Optimization. Cam-
bridge University Press, 2004. 3

[BZK10] BOMMES D., ZIMMER H., KOBBELT L.: Practical mixed-
integer optimization for geometry processing. In Proceedings of the In-

ternational Conference on Curves and Surfaces (2010). 7

[CBSS17] CLAICI S., BESSMELTSEV M., SCHAEFER S., SOLOMON J.:
Isometry-aware preconditioning for mesh parameterization. Computer

Graphics Forum 36, 5 (2017). 2

[CCS∗21] CAMPEN M., CAPOUELLEZ R., SHEN H., ZHU L.,
PANOZZO D., ZORIN D.: Efficient and robust discrete conformal equiv-
alence with boundary. ACM Transactions on Graphics 40, 6 (2021). 2

[DAZ∗20] DU X., AIGERMAN N., ZHOU Q., KOVALSKY S. Z., YAN

Y., KAUFMAN D. M., JU T.: Lifting simplices to find injectivity. ACM

Transactions on Graphics 39, 4 (2020). 7

[DM98] DAGUM L., MENON R.: Openmp: an industry standard api for
shared-memory programming. IEEE Computational Science and Engi-

neering 5, 1 (1998). 6

[DSJ∗22] DESAI D., SHUCHATOWITZ E., JIANG Z., SCHNEIDER T.,
PANOZZO D.: ACORNS: An easy-to-use code generator for gradients
and Hessians. SoftwareX (2022). 2, 4, 8

[DVPSH15] DIAMANTI O., VAXMAN A., PANOZZO D., SORKINE-
HORNUNG O.: Integrable polyvector fields. ACM Transactions on

Graphics 34, 4 (2015). 8, 9

[ESBC19] EZUZ D., SOLOMON J., BEN-CHEN M.: Reversible har-
monic maps between discrete surfaces. ACM Transactions on Graphics

38, 2 (2019). 2

[GJ∗10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3. http://

eigen.tuxfamily.org, 2010. 3, 5

[GW08] GRIEWANK A., WALTHER A.: Evaluating Derivatives: Prin-

ciples and Techniques of Algorithmic Differentiation. SIAM, 2008. 3,
4

[HAWG08] HUANG Q.-X., ADAMS B., WICKE M., GUIBAS L. J.:
Non-rigid registration under isometric deformations. Computer Graph-

ics Forum 27, 5 (2008). 1

[Hog14] HOGAN R. J.: Fast reverse-mode automatic differentiation us-
ing expression templates in C++. ACM Transactions on Mathematical

Software 40, 4 (2014). 2, 4

[HP13] HASCOET L., PASCUAL V.: The Tapenade automatic differen-
tiation tool: principles, model, and specification. ACM Transactions on

Mathematical Software 39, 3 (2013). 2, 4

[HTS∗22] HERHOLZ P., TANG X., SCHNEIDER T., KAMIL S.,
PANOZZO D., SORKINE-HORNUNG O.: Sparsity-specific code opti-
mization using expression trees. ACM Trans. Graph. 41, 5 (2022). 4

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.

mitsuba-renderer.org. 4, 5, 8

[Jak19] JAKOB W.: Enoki: structured vectorization and differentia-
tion on modern processor architectures, 2019. https://github.com/

mitsuba-renderer/enoki. 2, 4

[JFH∗15] JIANG T., FANG X., HUANG J., BAO H., TONG Y., DES-
BRUN M.: Frame field generation through metric customization. ACM

Transactions on Graphics 34, 4 (2015). 1

[JP∗18] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/. 7

[JSP17] JIANG Z., SCHAEFER S., PANOZZO D.: Simplicial complex
augmentation framework for bijective maps. ACM Transactions on

Graphics 36, 6 (2017). 2

[KGL16] KOVALSKY S. Z., GALUN M., LIPMAN Y.: Accelerated
quadratic proxy for geometric optimization. ACM Transactions on

Graphics 35, 4 (2016). 2

[KKRK∗16] KJOLSTAD F., KAMIL S., RAGAN-KELLEY J., LEVIN

D. I., SUEDA S., CHEN D., VOUGA E., KAUFMAN D. M., KANWAR

G., MATUSIK W., ET AL.: Simit: A language for physical simulation.
ACM Transactions on Graphics 35, 2 (2016). 5

[LCBK19] LYON M., CAMPEN M., BOMMES D., KOBBELT L.:
Parametrization quantization with free boundaries for trimmed quad
meshing. ACM Transactions on Graphics 38, 4 (2019). 1

[LKK∗18] LI M., KAUFMAN D. M., KIM V. G., SOLOMON J., SHEF-
FER A.: OptCuts: Joint optimization of surface cuts and parameteriza-
tion. ACM Transactions on Graphics 37, 6 (2018). 1, 7

[LPW∗06] LIU Y., POTTMANN H., WALLNER J., YANG Y.-L., WANG

W.: Geometric modeling with conical meshes and developable surfaces.
ACM Transactions on Graphics 25, 3 (2006). 1

[LYNF18] LIU L., YE C., NI R., FU X.-M.: Progressive parameteriza-
tions. ACM Transactions on Graphics 37, 4 (2018). 2

[Mar19] MARGOSSIAN C. C.: A review of automatic differentiation and
its efficient implementation. Wiley Interdisciplinary Reviews: Data Min-

ing and Knowledge Discovery 9, 4 (2019). 3

[MGS∗21] MAKATURA L., GUO M., SCHULZ A., SOLOMON J., MA-
TUSIK W.: Pareto gamuts: Exploring optimal designs across varying
contexts. ACM Transactions on Graphics 40, 4 (2021). 1

[MSP∗17] MEURER A., SMITH C. P., PAPROCKI M., CERTÍK O., KIR-
PICHEV S. B., ROCKLIN M., KUMAR A., IVANOV S., ET AL.: SymPy:
Symbolic computing in Python. PeerJ Computer Science 3 (2017). 2

[Nau11] NAUMANN U.: The Art of Differentiating Computer Programs:

An Introduction to Algorithmic Differentiation. SIAM, 2011. 3, 4

[NJJ21] NICOLET B., JACOBSON A., JAKOB W.: Large steps in inverse
rendering of geometry. ACM Transactions on Graphics 40, 6 (2021). 1

[NW06] NOCEDAL J., WRIGHT S.: Numerical Optimization. Springer
Science & Business Media, 2006. 3, 6

[PGM∗19] PASZKE A., GROSS S., MASSA F., LERER A., ET AL.: Py-
Torch: An imperative style, high-performance deep learning library. Ad-

vances in Neural Information Processing Systems 32 (2019). 4

[PTH∗17] PORANNE R., TARINI M., HUBER S., PANOZZO D.,
SORKINE-HORNUNG O.: Autocuts: simultaneous distortion and cut
optimization for UV mapping. ACM Transactions on Graphics 36, 6
(2017). 1

[RPPSH17] RABINOVICH M., PORANNE R., PANOZZO D., SORKINE-
HORNUNG O.: Scalable locally injective mappings. ACM Transactions

on Graphics 36, 4 (2017). 7, 8

[RS15] RAY N., SOKOLOV D.: On smooth 3D frame field design. arXiv

preprint (2015). 2

[SAJ20] SELLÁN S., AIGERMAN N., JACOBSON A.: Developability of
heightfields via rank minimization. ACM Transactions on Graphics 39,
4 (2020). 1

[SBCK19] SCHMIDT P., BORN J., CAMPEN M., KOBBELT L.:
Distortion-minimizing injective maps between surfaces. ACM Transac-

tions on Graphics 38, 6 (2019). 1, 2, 7

[SC∗19] SHARP N., CRANE K., ET AL.: geometry-central, 2019.
https://www.geometry-central.net. 7

[SCBK20] SCHMIDT P., CAMPEN M., BORN J., KOBBELT L.: Inter-
surface maps via constant-curvature metrics. ACM Transactions on

Graphics 39, 4 (2020). 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org
https://github.com/mitsuba-renderer/enoki
https://github.com/mitsuba-renderer/enoki
https://libigl.github.io/
https://www.geometry-central.net

P. Schmidt, J. Born, D. Bommes, M. Campen, L. Kobbelt / TinyAD: Automatic Differentiation in Geometry Processing Made Simple

[Sch19] SCHROEDER C.: Practical course on computing derivatives in
code. In ACM SIGGRAPH Courses. 2019. 2, 3, 4

[SdGK19] SMITH B., DE GOES F., KIM T.: Analytic eigensystems
for isotropic distortion energies. ACM Transactions on Graphics 38, 1
(2019). 1

[SFCBCV19] SAGEMAN-FURNAS A. O., CHERN A., BEN-CHEN M.,
VAXMAN A.: Chebyshev nets from commuting PolyVector fields. ACM

Transactions on Graphics 38, 6 (2019). 1

[SGC18] STEIN O., GRINSPUN E., CRANE K.: Developability of trian-
gle meshes. ACM Transactions on Graphics 37, 4 (2018). 1

[SPSH∗17] SHTENGEL A., PORANNE R., SORKINE-HORNUNG O.,
KOVALSKY S. Z., LIPMAN Y.: Geometric optimization via composite
majorization. ACM Transactions on Graphics 36, 4 (2017). 7

[Tre21] TRETTNER P.: polymesh, 2021. https://gitlab.vci.

rwth-aachen.de:9000/ptrettner/polymesh. 7

[V∗18] VAXMAN A., ET AL.: Directional: A library for directional field
synthesis, design, and processing, 2018. https://avaxman.github.

io/Directional. 9

[WB06] WÄCHTER A., BIEGLER L. T.: On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear pro-
gramming. Mathematical programming 106, 1 (2006). 2, 7

[WG12] WALTHER A., GRIEWANK A.: Getting started with ADOL-C.
In Combinatorial Scientific Computing. Chapman-Hall CRC Computa-
tional Science, 2012. 2, 4, 8

[Yan21] YANG J.: FastAD: Expression template-based C++ library for
fast and memory-efficient automatic differentiation. arXiv preprint

(2021). 2, 4

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://gitlab.vci.rwth-aachen.de:9000/ptrettner/polymesh
https://gitlab.vci.rwth-aachen.de:9000/ptrettner/polymesh
https://avaxman.github.io/Directional
https://avaxman.github.io/Directional

