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Fig. 1. Overview. Non-meshable topological configurations in frame fields, e.g., invalid singularities or feature structures, induce degenerate integer-grid maps

and broken and incomplete hex meshes (top row). Our algorithm (bo�om row) automatically turns a given frame field into a locally meshable one, where a

valid integer-grid map enables a hex mesh that preserves all input features.

The main robustness issue of state-of-the-art frame �eld based hexahedral

mesh generation algorithms originates from non-meshable topological con-

�gurations, which do not admit the construction of an integer-grid map

but frequently occur in smooth frame �elds. In this article, we investigate

the topology of frame �elds and derive conditions on their meshability,

which are the basis for a novel algorithm to automatically turn a given non-

meshable frame �eld into a similar but locally meshable one. Despite local

meshability is only a necessary but not su�cient condition for the stronger

requirement of meshability, our algorithm increases the 2% success rate of

generating valid integer-grid maps with state-of-the-art methods to 58%,

when compared on the challenging HexMe dataset [Beaufort et al. 2022].

The source code of our implementation and the data of our experiments are

available at https://lib.algohex.eu.
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1 INTRODUCTION

Meshing of volumetric domains is an essential component of various

practical applications and research activities. Hexahedral meshes,

which decompose a volumetric domain into cuboidal cells, are a

popular choice in the context of simulation, e.g. based on �nite di�er-

ences, �nite elements or �nite volumes. Speci�cally, when working

with basis functions of high polynomial degree, e.g. in Spectral El-

ement Methods [Kopriva 2009], or when requiring higher-order

continuity between cells like in Isogeometric Analysis [Cottrell et al.

2006], the tensor-product nature of hexahedra o�ers advantages

as for instance a better performance-to-accuracy tradeo�. Due to

global topological constraints, the generation of hexahedral meshes

is signi�cantly more challenging than the generation of tetrahe-

dral meshes [Pietroni et al. 2022]. There is an ongoing scienti�c

debate regarding the range of applications, where the additional

e�ort is justi�able [Schneider et al. 2022]. However, to date, there is

a high industrial demand for hexahedral meshes, and consequently

algorithms to automatically obtain high-quality meshes are very
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actively researched [Pietroni et al. 2022]. A promising research di-

rection consists in methods based on frame �elds and integer-grid

maps [Bommes et al. 2013a], which have demonstrated enormous

practical value for quadrilateral surface mesh generation [Bommes

et al. 2013b]. However, so far industrial success of volumetric coun-

terparts for hexahedral meshing is prevented by a lack of robustness.

A typical integer-grid map approach consists of �ve major steps

sequentially generating (i) feature aligned frame �eld, (ii) seamless

map, (iii) integer quantization, (iv) integer-grid map, and (v) (poten-

tially higher-order) hexahedral mesh. Provably robust algorithms

exist only for the integer quantization (iii) [Brückler et al. 2022a]

and the (linear) mesh extraction (v) [Lyon et al. 2016], while steps

(i),(ii), and (iv) remain fragile.

Frame Field Meshability. The most problematic robustness issue

stems from a topological mismatch between frame �elds and integer-

grid maps, as described in [Pietroni et al. 2022; Reberol et al. 2019;

Viertel et al. 2016]. In frame �elds, additional topological structures

exist, which do not correspond to any con�guration available in a

quad/hex mesh, and which make the generation of a locally injective

integer-grid map impossible. The 2D setting, where singularities

are isolated points in the domain, is already well-understood. The

seminal work of Myles et al. [2014] presents an algorithm that is

capable of converting an input frame �eld on a triangular mesh

into a (globally) meshable one. Additional theoretical guarantees

have been identi�ed in [Shen et al. 2022; Viertel and Osting 2019].

Much less is known about the volumetric setting, where singularities

form a graph consisting of singular arcs and singular nodes. The

con�gurations existing in hexahedral meshes have been enumerated

[Liu et al. 2018; Nieser et al. 2011], however, non-meshable 3D frame

�eld topologies remain rather unexplored. So far, there are empirical

collections of problematic con�gurations [Reberol et al. 2019; Viertel

et al. 2016], and correction algorithms, either requiring non-trivial

user interaction [Corman and Crane 2019; Liu et al. 2018], or solely

focusing on the meshability of singular arcs [Jiang et al. 2014; Li

et al. 2012] but ignoring issues that occur at singular nodes, and

certain feature con�gurations. In Sec. 4 we explain why a certain

type of non-meshable singular nodes, called zipper nodes, frequently

occurs in smoothness optimized frame �elds. They are responsible

for the low success rate of state-of-the-art algorithms, speci�cally

in case of non-trivial feature constraints.

Goal. Given an input tetrahedral mesh with feature tags, cf. Fig.1,

our goal is to generate a locally injective integer-grid map, preserv-

ing all feature points, curves and surfaces in its induced hexahedral

mesh. We speci�cally target domains with internal features, which

are substantially more challenging in terms of meshability than

domains where all features are solely on the boundary.

Overview and Contributions. We mainly target the robustness

issues of step (i), namely non-meshable topological con�gurations

that exist in volumetric frame �elds and are frequently generated

by state-of-the-art algorithms [Reberol et al. 2019]. In Sec. 3.2 we

carefully analyze the di�erence between topological structures that

exist in general 2D frame �elds but are not possible in quadmesh-

induced frame �elds. Necessary and su�cient conditions for the

meshability of a frame �eld are identi�ed, and we discuss an algo-

rithm to turn a given frame �eld into a locally meshable, and with

further processing into a (globally) meshable one. Sec. 4 is devoted

to the meshability of 3D frame �elds. We carefully analyze condi-

tions for local meshability of singular arcs and singular nodes and

study their decomposability into fundamental pieces that can be

handled algorithmically. With the help of arc zipping, we design an

algorithm that converts an input frame �eld into a locally meshable

one. In Sec. 5 we describe a discretization enabling a concrete imple-

mentation based on piecewise constant frame �elds on tetrahedral

domains. Despite, only local meshability can be ensured – necessary

but not su�cient for meshability – the evaluation of Sec. 7 on basis

of the HexMe dataset [Beaufort et al. 2022] shows that our algorithm

is able to construct valid integer-grid maps for 58% of the domains.

Compared to the 2% success rate of state-of-the-art methods it is sig-

ni�cantly more robust. In Sec. 6 we present a novel non-conforming

optimization of locally injective seamless and integer-grid maps,

again improving robustness w.r.t. available alternatives.

2 RELATED WORK

We review the state-of-the-art hex meshing techniques focusing on

the related work of frame �eld-based methods. For a comprehen-

sive overview, we refer to surveys [Armstrong et al. 2015; Pietroni

et al. 2022; Yu et al. 2015]. Solely considering robustness, octree-

based methods [Gao et al. 2019; Livesu et al. 2021; Maréchal 2009;

Pitzalis et al. 2021] are attractive. However, the lack of a coarse

block-structure, motivates mapping-based techniques.

Integer-Grid Maps. One key idea in quadrilateral and hexahedral

mesh generation consists in constructing a map that transports cells

of a regular Cartesian grid to a boundary-aligned and conforming

mesh of the target shape. Some approaches require a block decom-

position as input [White et al. 1996], while others restrict the space

of considered maps. Polycube maps [Huang et al. 2014; Li et al. 2021;

Sokolov and Ray 2015; Tarini et al. 2004] require a bijection between

a continuous subset of the Cartesian-grid and the target shape, and

thus forbid internal singularities. Extensions have been investigated

to better handle shapes with handles [Fang et al. 2016; Mandad et al.

2022] or complex features [Guo et al. 2020], or targeting automatic

block decompositions [Livesu et al. 2020]. However, the inherent

restrictions do not admit high-quality meshes of complex domains

with interior feature constraints, e.g. required for computational

�uid dynamics involving multiple objects. Integer-grid maps (IGMs)

[Pietroni et al. 2022] exist for all quadrilateral/hexahedral meshes

and can thus in theory overcome all limitations. The generation

of an IGM involves di�cult non-linear mixed-integer optimization

and is therefore decomposed into several consecutive steps, namely

smooth frame �eld synthesis [Huang et al. 2011], locally injective

seamless map construction [Du et al. 2020; Garanzha et al. 2021; Ra-

binovich et al. 2017], integer-quantization [Brückler et al. 2022a,b],

and integer-grid map construction [Nieser et al. 2011]. Additional

post-processing is performed to obtain a high-quality hexahedral

mesh, including mesh extraction [Lyon et al. 2016], structural mesh

improvement [Gao et al. 2015, 2017b], and geometrical mesh im-

provement [Brewer et al. 2003; Livesu et al. 2015; Marschner et al.

2020; Xu et al. 2018].
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Frame �eld synthesis. Frame �eld based hex meshing was intro-

duced by [Nieser et al. 2011], employing a frame �eld de�ned by

a user-provided meta-mesh. The pioneering work of [Huang et al.

2011] established the spherical harmonics representation of frames,

which is invariant to octahedral symmetry and thus suitable for

continuous optimization. Improved boundary constraints [Ray et al.

2016], better optimization schemes [Palmer et al. 2020; Ray et al.

2016; Solomon et al. 2017], and odeco frame spaces [Palmer et al.

2020] have been investigated. All these methods optimize a Dirichlet-

type energy, enabling smooth �elds but not caring about meshability.

Frame �eld meshability. Not all frame �elds are topologically

equivalent to a quadrilateral/hexahedral mesh. While the 2D setting

is well understood, and [Myles et al. 2014; Shen et al. 2022] o�er

guarantees regarding meshable topology, the topology of 3D frame

�elds remains rather unexplored. The seminal work of [Nieser et al.

2011] partially characterizes discrete frame �eld topology on tetra-

hedral meshes, with singularities located on edges and vertices. It

is shown that singular edges can only be meshable if the rotation

along the cycle of incident tetrahedra is aligned with the edge, and

that singular vertex types are isomorphic to triangulations of the

sphere. A corresponding complete enumeration of singularities of

hexahedral meshes has been given in [Liu et al. 2018], which is

su�cient to analyze local meshability of frame �elds, and can help

design singularity graphs for singularity-constrained �eld genera-

tion [Corman and Crane 2019; Liu et al. 2018]. However, globally

su�cient conditions for meshability are still not available.

Frame �eld correction. Automatic correcting of meshability de-

fects in frame �elds has already been studied [Jiang et al. 2014; Li

et al. 2012]. The key idea of [Li et al. 2012] is to collapse all non-

meshable singular edges. The alternative approach [Jiang et al. 2014]

splits non-meshable singular arcs into meshable ones. Unlike our

approach, both prior methods do not investigate meshability of sin-

gular nodes and consequently can only repair a limited range of de-

fects. Viertel at al. [2016] discusses two reasons for non-meshability,

namely singular edges not being aligned to the �eld and limit cycles.

They report that it is ine�ective to force alignment of the �eld to

static singular edges, motivating our reverse approach, deforming

singular edges instead, discussed in Sec. 5.3. Furthermore, [Reberol

et al. 2019] investigates non-meshable 3-5 arcs, often occurring in

CADmodels. Four strategies for correction are proposed, while only

a heuristic that snaps singular arcs to the boundary is considered

to be practically feasible. However, 3-5 arcs correspond to a special

case of a non-meshable singular node, and in Sec. 4.5 we describe a

systematic approach to handle all potential con�gurations.

3 MESHABILITY IN 2D

3.1 2D Frame Field Topology

The topology of a 2D frame �eld is fully characterized by the behav-

ior of streamlines of its corresponding vector �eld on a 4-sheeted

branched cover of the 2D domain Ω ⊂ R2, as introduced in [Käl-

berer et al. 2007]. Consequently, we will brie�y revisit vector �eld

topology before proceeding with frame �eld topology. For a detailed

and complete discussion of vector �eld topology we refer the reader

to [Asimov 1993; Günther and Baeza Rojo 2021].
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Fig. 2. (a) Local vector field topology of an isolated singularity (orange)

with five sectors, formed by streamlines of parabolic(green), hyperbolic

(blue), and elliptic(red) flow behavior. Separatrices (yellow) divide space

into sectors of di�erent flow behavior. (b) Global vector field topology: The

topological skeleton consists of all separatrices (yellow), dividing space into

regions of identical flow behavior, potentially including closed orbits. A limit

cycle (green) is a streamline that converges to a closed orbit.

Local Vector Field Topology. An important topological feature of a

vector �eld E (G) : Ω → R2 are its singularities, i.e. points, curves or

regions where | |E (G) | |2 = 0. In our setting only isolated point singu-

larities are of importance, where the vector �eld does not vanish in

an n-disk neighborhood �n of the singularity with circular bound-

ary m�n = �n . In such local neighborhood of a singularity, there are

only four di�erent types of streamlines that can be distinguished

based on their limit behavior in forward and reverse �ow directions,

as illustrated in Fig. 2. A streamline is called a closed orbit, if it cycles

on a closed path around the singularity, which in this case is called

a center. Otherwise, the �ow in forward/reverse direction can either

converge to the singularity or diverge away from it. A parabolic

streamline converges in one and diverges in the other direction. It is

called in�ow if the forward direction is converging, otherwise it is

called out�ow. A hyperbolic streamline diverges in both directions,

and an elliptic streamline converges in both directions. Partitioning

all streamlines passing through the local neighborhood circle �n
according to their type, results in a cyclic sequence of parabolic,

hyperbolic, and elliptic sectors. This cyclic sequence fully speci�es

the topological type of a point singularity. A separatrix is a parabolic

or elliptic streamline separating space into sectors of di�erent �ow

behavior. An example of the local vector �eld topology at an isolated

singularity is shown in Fig. 2a. The index of an (interior) singular-

ity quanti�es how many full rotations the vector �eld undergoes

when traversing�n in counter-clockwise (CCW) sense. Considering

that parabolic sectors are bounded by separatrices of identical type,

i.e. either both in�ow or both out�ow, while hyperbolic and elliptic

sectors are bounded by separatrices of di�erent �ow direction, the

integer-valued index of a singularity with =? parabolic, =ℎ hyper-

bolic, and =4 elliptic sectors can be computed by � = 1 − 1

2
=ℎ + 1

2
=4 .

The signs re�ect that the �eld rotates CW in hyperbolic and CCW

in elliptic sectors. Due to alternating in↔out-�ow and continuity

of the vector �eld =ℎ + =4 is always even, ensuring that the index is

an integer as expected.
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Fig. 3. (a) Local frame field topology at an isolated singularity (orange)

with three di�erent sectors of quad, polar, or anti-quad type. Only quad

sectors are meshable since otherwise triangular and digon pa�erns appear.

(b) Mesh-induced frame field.

Global Vector Field Topology. The topological skeleton encodes the

global topology of a vector �eld by partitioning the domain into

regions of identical asymptotic �ow behavior. It consists of the union

of all singularities and separatrices in the entire domain, including

those induced by singularities, and moreover closed orbits at the

interface between di�erent �ow behavior. On the global scale, there

is one additional type of asymptotic streamline behavior that cannot

be observed near isolated singularities. A streamline is called a limit

cycle, if it asymptotically converges to a closed orbit. Fig. 2b depicts

a topological skeleton including a limit cycle (green).

Local Frame Field Topology. A frame consists of four R2 vectors

{D, E,−D,−E}, which are pairwise anti-parallel and often speci�ed

by a matrix � = [D, E] ∈ R2×2. A frame �eld corresponds to a vector

�eld on a 4-sheeted branched cover, where pointwise each branch

corresponds to one of {D, E,−D,−E}, and sheets connecting non-

trivially at singularities. For non-singular points with | |� | |2 ≠ 0,

we require det � > 0 such that u-streamlines can never be parallel

to v-streamlines when projected onto the domain, and a u-vector

on one branch cannot vanish independently of the v-vector on the

other branch. It would be possible to solely discuss the topology

of a frame �eld in terms of the topology of the vector �eld on the

4-sheeted branched cover. However, topological sectors will over-

lap when projected to the original domain, and several topological

con�gurations, existing for entirely independent vector �elds, are

excluded by the det � > 0 condition. This motivates the de�nition

of new types of frame �eld sectors, which are meaningful on the

domain itself and fully characterize the frame �eld behaviour. Simi-

larly, to the vector �eld case, topological sectors at a singular point

are de�ned by subsequent separatrices and the rotational behaviour

of the �eld in-between them. However, in case of a frame �eld,

CCW-subsequent separatrices might belong to di�erent branches,

e.g. an out�ow-u-separatrix might be followed by an out�ow-v-

separatrix. Due to continuity of the frame �eld, when expressed

in a common coordinate chart, two CCW-subsequent separatri-

ces can only be on (i) the same branch, (ii) the next branch, or

(iii) the previous branch, e.g. an out�ow-u separatrix can only be

followed by an out�ow-u, an out�ow-v, or an in�ow-v separatrix.

u

v

-u

-v

quadpolar anti-quad

We call the corresponding three types of

sectors polar, quad, and anti-quad, all il-

lustrated in Fig. 3a. The complete CCW-

transition diagram is shown on the right.

The 1
4Z-valued index of a frame �eld sin-

gularity with =@ quad, =? polar, and =0
anti-quad sectors can be computed by

� = 1 −
1

4
=@ +

1

4
=0 (1)

Global Frame Field Topology. In analogy to the vector �eld case

the topological skeleton consists of the union of all singularities and

separatrices, which partition the domain into �ow-aligned regions.

Additional nodes of the topological skeleton are induced by the

intersection of separatrices on di�erent branches.

3.2 2D Frame Field Meshability

We call a 2D frame �eldmeshable if a quadrilateral mesh of identical

topology exists. Comparing the topology of a frame �eld with the

topology of a mesh is possible through the notion of the mesh-

induced frame �eld topology introduced next.

Mesh-induced Frame Field Topology. The edges of a quadrilateral

mesh in 2D can be interpreted as a discrete representation of the

streamlines of an underlying frame �eld, as illustrated in Fig. 3b.

A discrete streamline following a mesh edge continues through a

regular vertex and either forms a closed cycle, or terminates at a

boundary point or a singular vertex. The topology of all remain-

ing streamlines through the domain is uniquely determined by

the �ow along edges of the dual mesh in the following way: All

streamlines in-between two opposite edges of a quadrilateral are

topologically identical to the corresponding dual streamline, i.e. the

channel formed by a strip of subsequent quads, as illustrated in

Fig. 3b in green. Please note that we have fully de�ned the topology

of the mesh-induced frame �eld without explicitly constructing or

de�ning the geometry of the �eld.

Meshability Conditions. Comparing the topological structures

that exist in general frame �elds with those induced by a mesh,

we deduce the following necessary and su�cient conditions for

meshability of a frame �eld in 2D:

(C1) Feature Alignment –The frame �eld aligns to all feature curves

on the domain, to ensure their correct re-production in the

quad mesh.

(C2) Isolated Singularities – All singularities with | |� | |2 = 0 are

isolated points and there are no curve or patch singularities,

which might cause mesh degeneracies.

(C3) Quad sectors only – The frame �eld does not contain any polar

or anti-quad sectors, which would induce non-quad cells in

the mesh.

(C4) No limit cycles – A meshable frame �eld cannot contain limit

cycles since all streamlines of the mesh-induced frame �eld

topology are either closed orbits, or end at singularities or

the boundary.

Su�ciency of the conditions can be veri�ed in a constructive

way. If (C1)-(C4) are satis�ed, all cells of the topological skeleton

are either equivalent to a quadrilateral, or an annulus. Enriching
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the topological skeleton with all streamlines that are tangential to

feature curves, and one streamline for each annulus to cut it into

a quadrilateral, is su�cient to obtain a valid quad mesh. Necessity

of the conditions is also straightforward since, violation of (C1) is

in con�ict with meshing of feature curves, violation of (C2) implies

singularities that do not exist inmesh-induced frame �eld topologies,

violation of (C3) generates triangles in the topological skeleton, and

violation of (C4) induces a topological skeleton, which is not even

a cell-complex anymore. Please note that su�ciency of (C1)-(C4)

is only true for 2D domains, while for surfaces embedded in R3,

additional degeneracies exist, e.g. Fig. 5 of [Myles et al. 2014].

Local Meshability. We call a frame �eld locally meshable, if at each

point of the domain there is an arbitrarily small n-neighborhood that

is meshable. Local meshability requires that conditions (C1)-(C3)

are ful�lled but omits (C4), which is only relevant on a global scale.

(a) (b) (c) (d)

Fig. 4. The polar sector in (a) is modified into the quad sector in (b) by

adding an index 1
4 singularity. Only a local sector neighborhood is altered,

depicted with magenta streamlines. Similarly, the anti-quad sector in (c) is

modified into a quad sector by adding two index 1
4 singularities.

Ensuring Local Meshability. Given a frame �eld that satis�es (C1)

and (C2), it is possible to turn it into a locally meshable �eld satisfy-

ing (C3), solely by modifying an n-neighborhood of its singularities.

As illustrated in Fig. 4ab, a polar sector at a singularity can be

converted into a quad sector by compensating the added rotation

with an � =
1
4 singularity. The modi�cation is restricted to an n-

neighborhood of the polar sector and does not alter the �eld outside.

In an analog way, an anti-quad sector can be turned into a quad sec-

tor at the cost of locally adding two � = 1
4 singularities, as depicted

in Fig. 4cd. While a conceptual understanding of local meshability

and modi�cations to ensure it is su�cient in our context, a con-

crete algorithm can be found in the supplemental material of [Myles

et al. 2014], where sector constraints are added to the angle-based

formulation of [Bommes et al. 2009].

Sector Modi�cations. A generalization of the polar/anti-quad sec-

tor removal results in a class of potential sector modi�cations. A

modi�cation of a �ow-aligned local neighborhood N can be per-

formed if and only if it respects the index theorem, i.e. Δ=0 = Δ=@ ,

with Δ=0 , Δ=@ quantifying the di�erences of total number of anti-

quad and quad sectors of all singularities in N . In the example of

Fig. 4ab, Δ=0 = Δ=@ = 0 since we add one quad sector at the original

singularity but remove one at a regular point, which becomes a

singularity of index 1
4 , while the index of the original singularity

reduces by 1
4 . For the example of Fig. 4cd, Δ=0 = Δ=@ = −1 since

we add one quad sector and remove one anti-quad at the original

singularity and remove one quad sector at two previously regular

points. Please note that addition or removal of polar sectors does

u

su

sv

svu suv

p0

(a) (b)

Fig. 5. (a) a hexahedral mesh induces a frame field with streamlines aligned

to all edges, and faces, and flowing through (green) channels created by

dual chords (dark green) everywhere else with separatrices and separating

surfaces in orange. (b) A pair of vector fields D and E is not necessarily

integrable. Consequently, the red streamsurface (DE formed by streamlines

of E and seeded by (D passing through ?0 is di�erent from the blue stream-

surface (ED generated by exchanging the order of vector fields.

not require modi�cation of other singularities in the neighborhood,

and the same is true for addition or removal of pairs of quad and

anti-quad sectors.

Ensuring Meshability. Given a frame �eld that is locally meshable,

it can be turned into a (globally) meshable one with the motorcycle

graph based algorithm proposed by Myles et al. [2014]. The zero

loop elimination strategy e�ectively removes limit cycles, typically

at the cost of adding pairs of singularities. We leave the discussion

of directly converting the topological skeleton into a meshable one

for future work, and instead continue with the main topic of this

article, frame �eld meshability in 3D.

4 MESHABILITY IN 3D

Similarly to the 2D case, a hexahedral mesh in 3D can be seen

as a discrete representation of streamlines of a 3D frame �eld, as

illustrated in Fig. 5a. The singularities form a graph consisting of

nodes and �ow-aligned arcs, referred to as the singularity graph [Liu

et al. 2018]. In contrast to 2D, there are two major di�erences that

complicate themeshabillity of 3D frame �elds, i.e. (i) non-uniqueness

of streamsurfaces, and (ii) singular arcs. Both will be investigated

in more detail next.

4.1 Streamsurfaces

While under mild continuity conditions, the streamlines of an ar-

bitrary vector �eld D (G) : R3 → R3 are uniquely de�ned by in-

tegration, this is no longer true for the streamsurfaces formed by

D (G) in combination with a second vector �eld E (G) : R3 → R3, as

illustrated in Fig. 5b. Assume that BD and BE are two streamlines of D

respectively E that intersect at a point ?0. Then BD serves as a seed

curve for a well-de�ned stream surface BDE , which is formed by all

streamlines of E that pass through BD . However, since away from

BD the surface resulting from streamlines along E is not necessarily

tangential to D, the shape of the surface depends on the order of

vector �elds in this process. The stream surface BED seeded by BE
and formed by streamlines of D in general has a di�erent shape,
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Zipping

Unzipping

(a) (b)

Fig. 6. (a) A footprint of a 2D singularity is extruded along the blue line

field to the orange flow-aligned singular arc. (b) Two orange flow-aligned

singular arcs of index −1/4 are partially zipped to the red singular arc of

index −1/2, creating two red zipper nodes.

except for the seeds BD and BE which by construction are part of

both surfaces. Only if the pair of vector �elds is integrable, mean-

ing that the necessary and su�cient conditions of the Frobenius

theorem [Frankel 2011] are satis�ed, the streamsurfaces are well

de�ned in the sense that BDE = BED for any seed point of the domain.

Consequently, unless we can guarantee integrability – e.g. for a

hexmesh-induced frame �eld – there are no well-de�ned stream-

surfaces that partition space into hexahedral cells. This prevents a

direct extension of the 2D meshability results, resulting from the

well-de�ned quadrilateral cells of the topological skeleton.

4.2 Singular Arcs

A local neighborhood of a 2D frame �eld, called footprint, can be

extruded along an additional transversal line �eld to a tubular swept

volume equipped with a 3D frame �eld, as depicted in Fig. 6a. If the

footprint contains one isolated singularity, a sweep results in a �ow-

aligned singular arc. Such singular arcs are special in the sense that

only two vectors of a frame � = [D, E,F] ∈ R3×3 vanish, inducing

a A0=: (� ) = 1 property. The 8=34G of a �ow-aligned singular arc

is identical to the index of its footprint. If the footprint contains

only quad sectors – a necessary condition for meshability – we call

the sweep a (locally) meshable singular arc. Two �ow-aligned arcs

are parallel w.r.t. a (local) coordinate chart, if both belong to the

same sheet of the branched cover. While hexmesh-induced frame

�elds contain only meshable singular arcs, general frame �elds

allow additional non-meshable singular arc types, exhibiting one or

several of the following defects:

(D1) Compound Monodromy – In contrast to �ow-aligned arcs,

where the frame �eld rotates around one axis of the frame,

other non-meshable monodromies from the Octahedral group

are possible, as explained in more detail below.

(D2) Flow Misalignment – The singular arc is not tangential to

the frame �eld, cf. Fig.7, which prevents meshability and

inevitably violates the A0=: (� ) = 1 property.

(D3) Non-constant Footprint – While the index of a �ow-aligned

arc is constant, according to Eqn. 1, the sectors can still con-

tinuously change along the arc in an index-invariant fashion,

e.g. an isolated separatrix can turn into a polar sector, or into

a pair of hyperbolic and elliptic sectors.

(D4) Non-meshable Footprint – Meshability requires a footprint

equipped only with quad sectors, according to (C3).

A

A1 A2

A3

Fig. 7. (Le�) the red singular arc� of constant monodromy `� is not aligned

to the blue streamlines of D. (Right) A�er aligning ±D to � in a rotation-

minimizing fashion, theD-aligned singular arcs�1 and�3 of index � (green)

connect at singular nodes(red) to the −D-aligned arc �2 of index −� (blue).

The monodromy ` of a singular arc speci�es the rotation a frame

undergoes when traveling along a cycle enclosing the singular arc

but no other singularities. When expressed in the coordinate system

of the frame itself the monodromy is an element of the octahedral

group O, as explained in [Corman and Crane 2019]. Only 10 out of 24

octahedral elements correspond to rotations around one axis of the

frame and admit meshable singular arcs. According to [Jiang et al.

2014] we denote the remaining 14 elements as being of compound

type, implying non-meshability of a singular arc, as well as violation

of the A0=: (� ) = 1 condition, both proven in [Nieser et al. 2011].

Next, we will describe an approach to convert a general frame

�eld into one containing only meshable singular arcs, which is a

necessary condition for meshability of a frame �eld.

Arc Zipping. A fundamental operation for modifying singular

arcs and singular nodes are zipping and unzipping, both depicted

in Fig. 6b. Given two parallel �ow-aligned singular arcs �1 and �2

with index �1 and �2 respectively, the process of letting the arcs

approach each other until they partially merge at a novel �ow-

aligned arc �I is called zipping. The index of �I is �I = �1 + �2.

The inverse process is called unzipping, and the resulting indices

can be any �1 and �2 satisfying �1 + �2 = �I . Like a zipper that can

open and close continuously, both operations can be restricted to a

sub-segment of the arcs, in which case two singular nodes, called

zipper nodes – explained in detail in Sec. 4.3 – are created at the end

points of the (un)zipping operation. Arc zipping operations are the

3D analog of the sector modi�cations of Sec. 3.2, acting inside the

sweep volume of a �ow-aligned singular arc. A regular streamline,

i.e. a �ow aligned arc of zero index, can be unzipped into arcs of

opposite sign �1 = −�2. Such a pair of index ± 1
4 serve as generators

for all other meshable arcs under the zipping operation since they

correspond to addition respectively removal of one quad sector in

the footprint.

Ensuring Meshable Singular Arcs. A general frame �eld can be con-

verted into one with solely meshable singular arcs by successively

removing defects of types (D1)-(D4). Each modi�cation assumes

that defects of all former types have already been resolved and

guarantees that none will be re-introduced. Defects of type (D1)

can be resolved following the observation of [Jiang et al. 2014] that

all non-meshable monodromies are the product of meshable ones,

or in other words two non-parallel arcs that have been zipped to-

gether. Consequently, a singular arc of compound type can always

be decomposed into two arcs of non-compound type by non-parallel

unzipping. Modi�cation of the frame �eld is only required in an

arbitrarily small local neighborhood of the compound arc. Defects
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Split

Collapse

Fig. 8. (Le�) unzipping an arc of index 1
4 adds a quad sector and corresponds

to an edge split (dashed green) in the triangulation. (Right) unzipping an

arc of index − 1
4 removes a quad sector and corresponds to an edge collapse

(dashed green) in the triangulation.

of type (D2) can be resolved by a continuous transformation of the

frame �eld in an epsilon neighborhood such that the �eld remains

smooth but becomes tangential to the arc, as depicted in Fig.7. Note

that the monodromy `� of an oriented arc � o�ers two alignment

options ±0` with 0` ∈ {D, E,F} , corresponding to the two frame

axes remaining invariant under the monodromy transformation.

The choice of sign matters for the resulting index since a rotation

by U around 0` is identical to a rotation by −U around −0` . Conse-

quently, the sign of 0` needs to be determined geometrically, e.g. by

minimizing the required rotation. If it �ips along the arc, singular

nodes are implied, splitting the arc into several segments of index

with alternating sign, as depicted in Fig.7. Defects of type (D3) are

resolved by splitting an arc into sub-arcs of constant footprint by

introducing singular nodes at the transition points. All defects of

type (D4) can be repaired by unzipping. For instance, the repair of a

polar sector is done by unzipping an index 1
4 singular arc transver-

sally into the polar sector, modifying the footprint as in Fig. 4ab.

After ensuring that all singular arcs are of meshable type, all

remaining defects preventing local meshability can only be located

at singular nodes, which will be discussed next.

4.3 Singular Nodes

In a hexmesh-induced frame �eld all singular nodes – branching

points where several singular arcs meet – are isolated point sin-

gularities with | |� | |2 = 0, a condition identical to (C2) in 2D. All

singular node types existing in hexmesh-induced frame �elds are

called meshable, see [Liu et al. 2018] for a complete enumeration.

First, we will clarify that meshable singular nodes always result

from the interaction of singular arcs, and that meshable arcs of

index ± 1
4 not only serve as generators for all meshable arcs but also

as generators for all meshable nodes.

Theorem 4.1. All types of meshable singular nodes can be con-

structed by iteratively unzipping meshable singular arcs of index ± 1
4 .

Proof. Each meshable singular node type is homeomorphic to a

triangulation of the sphere, as observed in [Nieser et al. 2011]. Each

edge of the triangulation corresponds to one quad sector, being

incident to the two �ow-aligned arcs �1 and �2 represented by

vertices opposite to the edge. From this perspective, unzipping a

meshable singular arc of index − 1
4 corresponds to an edge collapse

(a)

(b)

(c)

(d)

Fig. 9. (a) the smoothest frame field on the notch model contains a zipper

node since the features on top require singularities, while the base favours

a constant frame field without singularities. (b) resolving a zipper node by

zipping, (c) resolving a zipper node by unzipping, (d) resolving a zipper node

by unzipping a regular streamline and a�aching the blue − 1
4 arc to the

parabolic sector at the zipper node, turning it into a quad sector.

(removing a quad sector from �1 and �2), while unzipping one of

index 1
4 is equivalent to an edge split (adding a quad sector to �1

and �2), both depicted in Fig. 8. All triangle meshes of genus zero
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Iin

Iout

(a)
Iout

Iin

Iin-I

I

Iout-I

(b)

I

(c)
Iout

Iout-I

Iin

(d)

Fig. 10. Arc Unzipping at singular node (red): (a) Initial configuration with

incoming arc (blue) and outgoing arc (magenta) forming a hyperbolic sector.

(b) Unzipping an arc of index � generates new arcs of indices �8=−� and �>DC−

� and two zipper nodes. (c) Singular arc detachment with (T1) corresponds

to � = �8= = �>DC . (d) Arc unzipping with (T3) corresponds to � = �8= ≠ �>DC .

can be generated by a sequence of edge collapses and edge splits

when starting from an octahedron (regular node). Consequently, all

meshable singular nodes can be generated by iteratively unzipping

meshable singular arcs of index ± 1
4 . □

Zipper Nodes. Not all singular nodes resulting from the interac-

tion of meshable singular arcs are meshable. While meshability of

arcs ensures that their footprint is intact, it is still possible that two of

them converge in a non-meshable fashion to a singular node, creat-

ing a node con�guration of polar or anti-quad type. Since anti-quad

con�gurations are rare in smooth �elds, we leave their treatment

for future work and focus the discussion to polar con�gurations

corresponding to (non-meshable) parabolic sectors. The fundamen-

tal case is the zipper node of Sec. 4.2, resulting from an incomplete

zipping operation where two parallel arcs �0 and �1 with indices

�0 and �1 converge at the zipper node in another parallel arc �I of

index �I = �0+�1. The special case of �I = 0 is called an isolated zipper

node, which in contrast to general zipper nodes is never forced to

unzip through other singular nodes since the regular streamline

�I allows perturbation as illustrated in Fig. 11bc. Unfortunately,

zipper nodes are not rare and can frequently be observed in frame

�elds that are optimized for smoothness, e.g. the notch model of

Fig. 9a. The feature constraints on top require two singular arcs of

index ± 1
4 , however, the quadrilateral base favors a constant frame

�eld. Consequently, the smoothest frame �eld exhibits an isolated

zipper node, where the two singular arcs of opposite index meet in

a parabolic sector and then continue as a regular arc.

Repairing Isolated Zipper Nodes. There are three di�erent strate-

gies to get rid of isolated zipper nodes, namely Zipping, Unzipping,

and Transversal Unzipping, as illustrated in Fig. 9bcd. Identical repair

strategies have been suggested in [Reberol et al. 2019], where zipper

nodes are called non-meshable 3-5 arcs.

(S1) Zipping – Strategy I consists in zipping �0 and �1 together,

i.e. pushing the zipper node forward such that the parabolic

sector closes, as depicted in Fig. 9b.

(S2) Unzipping – Strategy II consists in unzipping�0 and�1 along

�I , i.e. pulling the zipper node along �I such that the para-

bolic sector opens, as depicted in Fig. 9c.

(S3) Transversal Unzipping – Strategy III consists in leaving all

three arcs meeting at the zipper node untouched but instead

unzipping a regular streamline passing transversally through

the parabolic sector formed by �0 and �1, generating a pair

(a) (b) (c)

Fig. 11. Zipper Node Detachment (T2): (a) A parabolic sector at a singular

node (red) is formed by singular arcs of index ±� . (b) Zipping both singular

arcs results in an isolated zipper node on a regular arc. (c) Perturbing the

regular streamlines (black) detaches the zipper node from the singular node.

of ± 1
4 singular arcs. The − 1

4 arc is unzipped to the tip of the

parabolic sector turning it into a quad sector, as depicted in

Fig. 9d. In general, there are two directions that are transversal

to the parabolic sector, o�ering two topologically di�erent

modi�cations. Favorable due to lower geometric error is the

one less aligned to the parabolic sector.

Termination of Isolated Zipper Node Repair.

The unzipping operations of (S2) and (S3) re-

quire that a con�guration is reached, where the

zipper node can be locally resolved. Most com-

monly, the zipper node will reach a transversal

boundary, where it can be disentangled into two

separated parallel arcs, e.g. Fig. 9c. The second

disentangling option consists in canceling a pair of anti-parallel

zipper nodes of identical type, as illustrated in the inset. Both op-

tions are special cases of the general unzipping operation at singular

nodes, which is described below and illustrated in Fig. 10. The infea-

sible case corresponds to an unzipping operation continuously mov-

ing the zipper node forward without ever terminating, e.g. getting

caught in a limit cycle. Fortunately, arbitrary topology-preserving

perturbations of the frame �eld are allowed before unzipping along

the regular streamline, o�ering rich options to �nd a transversal

boundary or an anti-parallel zipper node. Moreover, at any point

of the path the unzipping direction can be changed to an orthogo-

nal one by transversal unzipping with (S3). In all our experiments,

valid unzipping paths could already be found by �eld perturbation.

However, a complete analysis of termination guarantees is left for

future work. The zipping strategy (S1) requires the existence of a

surface bounding both singular arcs but not containing other singu-

larities or features where closing the zipper would get stuck. Since

the conditions of (S1) are only rarely satis�ed in practice, unzipping

via (S2) will be the main operation of our algorithm. Strategy (S3)

is always feasible but generates an additional zipper node and will

thus only be applied when (S2) is infeasible.

Repairing Non-Meshable Nodes. Zipper nodes are only one partic-

ular type of non-meshable node and we still need a general strategy

to repair other types. Here, we assume that a non-meshable node

is only incident to meshable arcs, e.g. ensured by the algorithm

of Sec. 4.2. The key observation is that each such non-meshable

node can be seen as a superposition of meshable singular arcs and

zipper nodes. Consequently, it is not surprising that a generalization

of Theorem 4.1 to non-meshable nodes exists, guaranteeing a full
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(a) (b) (c) (d) (e)

Fig. 12. (a) A non-meshable singular node (black) is incident to singular arcs (green and blue) and feature curves and surfaces (orange). (b) Arc unzipping with

(T3) resolves a parabolic sector by pushing the green arc through the node, creating a novel zipper node (dark red). The blue arc is of negative index, such that

another (T3) operation would result in a transversal polar sector on the orange feature surface. Instead, the parabolic sector is resolved with the parabolic

sector reversal of (T4) shown in (c). The fully constrained parabolic sector between two orange feature curves can only be resolved by the transversal arc

unzipping of (T5) shown in (d). The resulting orange singular node is locally meshable and corresponds to the hex mesh configuration of (e).

decomposition of a non-meshable node into a �nite set of isolated

meshable arcs and isolated zipper nodes. Singular arcs can be de-

tached by unzipping through the singular node as shown in Fig. 10c,

while zipper nodes can be detached by zipping, depicted in Fig. 11.

Unzipping each zipper node �nalizes the decomposition and clari-

�es that the reverse process constructs an arbitrary (non-meshable)

singular node from a set of isolated singular arcs.

Theorem 4.2. Every singular node of a frame �eld that is only

incident to meshable singular arcs of index ± 1
4 can be decomposed

into a �nite set of isolated meshable singular arcs, and isolated zipper

nodes by only modifying an arbitrarily small local neighborhood.

Proof. It su�ces to observe that each quad sector incident to

a singular arc �1 continues along at least one other arc �2, both

forming a hyperbolic sector at the singular node. If the correspond-

ing indices are equal, i.e. �1 = �2, we can detach a singular arc by

unzipping as depicted in Fig. 10c. If two parallel arcs of opposite

index form a parabolic sector, we can detach them by zipping to an

isolated zipper node, as shown in Fig. 11. Iterating both operations

until all singular arcs are detached concludes the decomposition. □

Theorem 4.2 is a generalization of the hexmesh singularity decom-

position of the concurrent work [Zhang et al. 2023] to the setting

of frame �elds with meshable singular arcs but potentially non-

meshable singular nodes. Note that the decomposition is not unique,

depending on the order of unzipping/zipping operations.

4.4 Handling Feature Constraints

So far, we assumed that �eld alignment constraints are only caused

by singular arcs, which themselves can freely deform within the

domain. However, in our targeted hexahedral meshing setting, the

domain is additionally equipped with an arbitrary set of immutable

feature curves and feature surfaces, where the frame �eld needs to

align as well. Please note that junctions of piecewise smooth feature

curves and surfaces always induce singularities in the �eld, poten-

tially enforcing non-meshable parabolic sectors in their vicinity.

Repairing Feature-Constrained Singular nodes. In case of feature

constraints, the full decomposition of singular nodes based on The-

orem 4.2 is no longer always possible. The required local mod-

i�cation of streamlines to detach arcs by unzipping and detach

zipper nodes by zipping might be infeasible without creating new

non-meshable sectors enforced by feature alignment constraints.

Nevertheless, by adding three additional operations, i.e. singular

arc unzipping, parabolic sector reversal, and transversal unzipping,

a transformation into a locally meshable node and sets of mesh-

able arcs and zipper nodes can still be obtained in a systematic

way. Our local singular node repair is driven by four design prin-

ciples, (i) all non-meshable (parabolic) sectors incident at the sin-

gular node are successively resolved, (ii) newly introduced para-

bolic sectors are not incident to the singular node and are of zipper

node type with unzipping direction away from the singular node,

(iii) all singular arcs remain meshable, and (iv) modi�cations en-

abling a lower number of singular arcs are preferred over other

alternatives. The transformation considers �ve di�erent operations

to resolve parabolic sectors. Each of them targets a parabolic sec-

tor formed by a pair of arcs �1 and �2 with indices �1 and �2.

I1 I2

We call the parabolic sector fully constrained if both

arcs are tangential to di�erent features, partially con-

strained if only �1 is tangential to a feature and oth-

erwise unconstrained. An operation is not allowed if

new parabolic sectors incident to the singular node

are created. Speci�cally, it is not allowed to degener-

ate constrained quad sectors into polar sectors, or to

generate new arcs that form parabolic sectors with

feature curves or surfaces. If multiple operations are possible, they

are prioritized in the given order.

(T1) Singular Arc Detachment – A parabolic sector is resolved by

detaching the singular arc �2 with the unzipping operation

illustrated in Fig.10c. Existence of an outgoing arc of index

�2 is required. Fully constrained parabolic sectors cannot be

resolved by (T1) and the operation might be inadmissible for

�2 < 0 since the number of transversal quad sectors incident

to the singular node is reduced. However, unzipping with

�2 > 0 is always allowed since quad sectors are added.

(T2) Zipper Node Detachment – Two parallel singular arcs of op-

posite index �1 = −�2 are detached from the singular node by

zipping, resulting in an isolated zipper node, illustrated in

Fig. 11. The operation is only allowed if both singular arcs

can move freely, i.e. for unconstrained parabolic sectors, and

no feature surface separates both arcs.
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I1 I2

I1+I2

(a)

I1

I1+I2

I2

-I2

(b)

I1+I2

I1+I2

I2

-I2

I1

(c)

Fig. 13. Parabolic Sector Reversal (T4): (a) The initial zipper node (red) is

unzipping the blue arc of index �2 from the magenta arc. Unzipping direction

and unzipping index can be reversed by first unzipping the red arc as shown

in (b), creating a reversed zipper node unzipping with −�2, and subsequently

detaching the magenta arc of index �1 + �2 creating an additional isolated

zipper node shown in (c).

(T3) Arc Unzipping – A parabolic sector is pushed through the

singular node by unzipping �2, illustrated in Fig. 10d. The

operation is similar to (T1), however, allowing an outgoing

arc of di�erent index, resulting in a zipper node unzipping

along the outgoing arc. Similarly to (T1) it is inadmissible for

fully constrained parabolic sectors and might be inadmissible

if �2 < 0, as shown in the example of Fig. 12bc.

(T4) Parabolic Sector Reversal – A not fully-constrained parabolic

sector can be resolved at the cost of creating two new zipper

nodes as depicted in Fig. 13. One of them is isolated while the

other one lies on �1 and unzips away from the singular node.

Since the index of the unzipping arc turns into −�2, the (T4)

operation unlocks situations where (T1) and (T3) operations

are blocked due to a negative �2.

(T5) Transversal Arc Unzipping – Perform arc unzipping via (T3)

but transversally to the parabolic sector and with an index of
1
4 . The parabolic sector is turned into a quad sector at the cost

of generating two novel (outgoing) zipper nodes on transver-

sal arcs of the singular node. Since the unzipping is done with

a positive index, the (T5) operation is always admissible. It

corresponds to a local version of the (S3) strategy for zipper

node repair.

Fig. 12 shows an example of a feature-constrained singular node,

which is transformed into a locally meshable one by performing

operations (T3), (T4), and (T5).

Theorem 4.3. By only modifying an arbitrarily small local neigh-

borhood, every singular node of a frame �eld that is incident to ar-

bitrary feature curves and surfaces and only meshable singular arcs,

can be modi�ed into a locally meshable singular node connected to a

set of outgoing zipper nodes, and sets of additional isolated meshable

singular arcs, and isolated zipper nodes.

Proof. Operation (T5) resolves any parabolic sector at the sin-

gular node by adding two outgoing zipper nodes. Hence, iteratively

applying (T5) is su�cient to obtain the targeted decomposition by

successively adding quad sectors to arcs incident at the singular

node until all parabolic sectors are pushed to the outgoing zipper

nodes. Including operations (T1)-(T4) is not necessary to obtain

the decomposition, however, important to minimize the resulting

number of zipper nodes. □

I0 I1

(a)

I0 I1

(b)

I0 I1

I1-I0

(c)

I0 I1

(d)

I0

I1

(e)

I1

I0

I2

(f)

Fig. 14. (a) Collision of two anti-parallel zipper nodes, where the blue and

green arc are unzipped from the black feature curve. (b) For identical indices

�0 = �1, both zipper nodes can be disentangled into separate arcs with (T3).

(c) Given that both indices are of equal sign, arc unzipping with (T3) turns

one zipper node into an isolated one. (d) Collision of two parallel zipper

nodes, where the blue and green arc are unzipped from the black feature

curve. (e) For opposite indices �0 = −�1, an isolated zipper node can be

detached with (T2). (f) Collision of other parallel zipper nodes can o�en be

avoided by changing the unzipping order, unless cyclic dependencies exist

that need to be unlocked through transversal unzipping with (T5).

Resolving Non-Isolated and Feature-Constrained Zipper Nodes. Af-

ter repairing all singular nodes based on Theorem 4.3, the only re-

maining defects are zipper nodes. The repair of isolated zipper nodes

has already been clari�ed but non-isolated and feature-constrained

zipper nodes require additional considerations. While isolated zip-

per nodes can move rather freely by perturbing regular streamlines,

the trajectory of non-isolated or feature-constrained zipper nodes

is signi�cantly more restricted such that collision with singular

nodes or other zipper nodes might be unavoidable. Zipper nodes

forming partially constrained or unconstrained parabolic sectors

allow unzipping of at least one arc. If the unzipping arc is of positive

index, operation (T3) ensures that unzipping through a singular

node is always possible without creating novel defects. If unzipping

with negative index gets blocked at a singular node, the reversal

operation (T4) is performed, resulting in a reversed positive unzip-

ping index and one additional isolated zipper node. Collision of

two zipper nodes is allowed for two speci�c cases and treated in

the following way: (i) anti-parallel unzipping arcs with index of

identical sign trigger a (T3) operation, resolving both zipper nodes

if �1 = �2, and otherwise turning one zipper node into an isolated

one, both shown in Fig. 14abc. (ii) in case of parallel unzipping arcs

of opposite index (�1 = −�2), an isolated zipper node is detached via

(T2), as shown in Fig. 14e. For anti-parallel cases of opposite sign,

the unzipping arc of negative index is reverted via (T4). Other par-

allel collisions can be avoided by changing the order of unzipping,

i.e. �rst unzipping the zipper node in front. Cyclic dependencies

between parallel zipper arcs might exist, e.g. several parallel un-

zipping arcs of identical index on a cyclic feature curve as shown

in Fig. 14f. These can be unlocked by transversal unzipping with

(T5). The last case that requires special attention is zipper nodes

with fully constrained parabolic sectors caused by feature alignment

constraints, where only transversal unzipping with (T5) can avoid

novel parabolic sectors.
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4.5 Algorithm: Locally Meshable Frame Field

Combining all components of Sections 4.2, 4.3, and 4.4, we obtain an

algorithm to establish a locally meshable frame �eld. Starting from

a given domain equipped with arbitrary feature curves, feature

surfaces and a smooth frame �eld tangential to all features, the

algorithm performs four major steps, each targeting speci�c types

of defects and not re-introducing previously resolved ones.

(A1) Establish Meshable Arcs – All defects (D1)-(D4) related to non-

meshable singular arcs and feature arcs are repaired following

the procedure of Sec. 4.2.

(A2) Establish Meshable Nodes – All non-meshable singular nodes,

except zipper nodes, are transformed into locally meshable

ones. Parabolic sectors incident at a singular node are iter-

atively resolved with the prioritized operations (T1)-(T5) of

Sec. 4.4, potentially adding zipper nodes.

(A3) Resolve Non-Isolated and Feature-Constrained Zipper Nodes

– All non-isolated and feature-constrained zipper nodes are

eliminated following the rules of Sec. 4.4, potentially adding

isolated zipper nodes.

(A4) Resolve Isolated Zipper Nodes – All isolated zipper nodes are

resolved one after the other by unzipping with (S2), falling

back to transversal unzipping with (S3) if necessary.

Steps (A1) and (A2) are guaranteed to succeed and solely modify

arbitrarily small local neighborhoods of the non-meshable arcs and

nodes. In contrast, the resolution of zipper nodes in steps (A3) and

(A4) requires non-local frame �eld modi�cations and lacks a formal

termination guarantee.

5 DISCRETE LOCAL MESHABILITY

The operations necessary for obtaining local meshability with the

algorithm of Sec. 4.5 can be implemented in the discrete setting

of tetrahedral meshes. We will �rst clarify the discretization and

optimization of frame �elds and then explain the discrete repair

operations as well as a complementary handling of noisy singularity

graphs, frequently occurring in the discrete setting.

Domain and Feature Representation. The domain is represented

with a piecewise linear tetrahedral mesh T = (+ , �,) ,�) formed by

vertices+ , edges �, triangles) , and cells� . All feature nodes, curves

and surfaces are embedded in the tetrahedral mesh. Accordingly,

the subsets +� ⊂ + , �� ⊂ �, and )� ⊂ ) correspond to discretized

feature nodes, curves, and surfaces. In our algorithm the tetrahe-

dral mesh is not static, and will be modi�ed or re�ned whenever

necessary, always ensuring that the topology of all feature entities

and the domain remains intact.

Frame Field Representation. The frame �eld � is represented by

elements of ($ (3) in combination with octahedral groupO ⊂ ($ (3)

valued matching transformations" , which de�ne the connection

between neighboring charts. The frame �eld

is discretized in a piecewise constant manner

by assigning a frame �8 = [D8 , E8 ,F8 ] ∈ R
3×3

to each tetrahedron 28 ∈ � , where the columns

de�ne three vectors in the chart of 28 , and

34C (�8 ) = 1. Consequently, the matchings are

given as"8 9 ∈ R
3×3 for oriented dual edges 4★

8 9
∈ �★ between cells

28 and 2 9 . A frame �8 can be expressed in a neighboring chart by the

transformation [8→9 (�8 ) = �8"8 9 , also clarifying that "8 9 = "−198 .

Please note that our discretization is similar to the one of [Liu

et al. 2018] and our matchings are inverse to the linear part of their

integer-grid map transitions, i.e."8 9 = ' 9→8 .

Feature Alignment Constraints. Each feature edge imposes the con-

straint that in all incident cells one of the frame axes {±D,±E,±F}

aligns to it. Similarly, each feature triangle requires that one frame

axis within neighboring cells aligns to its normal vector, ensuring

that the orthogonal ones are tangential. Whenever a cell is incident

to multiple features resulting in a locally over-constrained situation,

we split edges of the corresponding tetrahedron to isolate alignment

constraints, similarly to [Liu et al. 2018]. Only in case of a feature

face incident to a feature edge, a cell with two alignment constraints

is allowed, consistently specifying the full frame.

Separation of Singularities and Features. Singular nodes and arcs

are represented by subsets of vertices +( ⊂ + and edges �( ⊂ �

of the tetrahedral mesh. To avoid special cases, we assume that

singular edges, singular vertices and features are maximally isolated

and do not interfere unnecessarily. Speci�cally, in the submesh

TE ⊂ T containing all cells incident to a singular/feature vertex E ,

all other features/singularities are incident to E and none are on

the boundary mTE . The same is required for singular/feature edges

and both requirements can be easily ful�lled by iteratively splitting

violating mesh edges until satis�ed.

Edge Monodromy. Given an (interior) oriented edge 48 9 ∈ � of

the tetrahedral mesh pointing from vertex

E8 to vertex E 9 , the monodromy of the con-

sistently ccw-oriented dual cycle �8 9 en-

closing 48 9 and visiting a sequence of cells

280 , 281 , . . . , 28: can be determined by concate-

nating the corresponding matching transformations along the dual

edges of the cycle. The resulting monodromy of an oriented edge

48 9 expressed in the chart of 280 is

`8 9 = "8081"8182 . . . "8:80 (2)

It characterizes the integral rotation of the frame when traveling

along the dual cycle expressed in the coordinate system of the frame

itself, resulting in an orientation-preserving permutation. All edges

of non-identity monodromy are singular. However, the monodromy

alone is neither su�cient to determine all singularities, nor able to

fully characterize the index and sector types of �ow-aligned arcs.

The problem is that the ($ (3) valued monodromy, as de�ned above,

is insensitive to full rotations, e.g. a regular �ow-aligned arc of

index 0 cannot be distinguished from a singular one with integer

index � ∈ Z. Fortunately, in case of �ow-aligned singular edges, the

ambiguity can be resolved.

Flow-Aligned Edge Index and Sector Types. Assume an edge 48 9
with monodromy `8 9 , which is not of compound type. In this case,

when traveling along the dual cycle at least one frame axis comes

back to itself, which is the rotation axis of `8 9 . Consequently, it is

possible to locally align the frames of all cells incident to 48 9 such

that the local �eld topology is fully characterized by the rotation of

the 2D frame �eld of frame vectors orthogonal to 48 9 . Additionally
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assuming that the rotation angle between neighboring frames is

below c – e.g. by adequate sampling – the index of an (interior)

edge 48 9 can be computed via

�8 9 =
1

2c

∑

4★
:;
∈�8 9

U8 9 (�:":; , �; ) (3)

with U8 9 (�,�) measuring the signed rotation angle to transform

frame � into frame� by a rotation around axis 48 9 . Please note that

the index does not depend on the orientation of edges, i.e. �8 9 = � 98
holds since the sign change of U is compensated by reversal of dual

edges. Sector types can be determined in a similar fashion by inves-

tigating sub-segments of the dual cycle�8 9 . A sub-segment� ⊂ �8 9

corresponds to a fan of tetrahedra incident at 48 9 . In case the frame

�eld is not only aligned to 48 9 but also to the bounding triangles

of the tetrahedral fan, the sector type is revealed by measuring the

di�erence between the opening angle of the fan and the rotation of

the frame. The corresponding sector angle W� is de�ned as

W� =

∑

28 9:; ∈�

V:;8 9 −
∑

4★
:;
∈�

U8 9 (�:":; , �; ) (4)

with V:;
8 9

being the dihedral angle incident to edge 48 9 of the tetra-

hedron with vertices (8, 9, :, ;). For quad sectors W� =
1
2c , for polar

sectorsW� = 0, and for anti-quad sectorsW� = − 1
2c . This is consistent

with Eqn. (1) since for the full dual cycle �8 9 = 1− 1
2c W�8 9

. In general,

there is no reason that the faces of the tetrahedral mesh conform

to all sectors at a singular edge. However, for constrained sectors

that are bounded by features faces (or feature/singular edges), the

alignment holds and W� can be computed robustly, revealing lo-

cal meshability defects caused by polar or anti-quad sectors in the

footprint of a singular arc.

Algorithm 1 FeatureAlignedSmoothField

Input: Tet mesh T , initial �eld F = (�,"), alignment constr. A

Output: Optimized �eld F=4F = (�=4F , ")

1: for : = 1 . . . #D<�C4AB do

2: for 28 ∈ � do

3: for 4★
8 9
∈ �★ do

4: 6← 59< 98 ⊲ express 59 w.r.t. 58
5: 58 ← 58 + B6=(6 · 58 )6 ⊲ accum. with correct sign

6: end for

7: 58 ← =>A<0;8I4 (58 )

8: 58 ← ?A> 942C (A, 58 ) ⊲ align to features

9: end for

10: end for

5.1 Frame Field Optimization

One important component of our algorithm is the optimization of

a smooth frame �eld subject to �xed topology and feature align-

ment constraints. We adopt a simple iterative averaging strategy

inspired by [Gao et al. 2017a], where the frames and matchings are

represented as unit quaternions 58 ,<8 ∈ R
4. However, in contrast

to [Gao et al. 2017a] we do not re-compute the matchings on the

�y since we want to preserve the �eld topology. The average of

Z

va

vb

A1
A2

Z

va

vb

A1
A2

Zipping

Unzipping

Fig. 15. Discrete Zipping/Unzipping requires a disc-topology patch of trian-

gles / , where the boundary edges are partitioned into oriented arcs �1 and

�2. Consistently changing the matchings dual to / and aligning frames to

�1, �2 changes the index of �1 by +Δ� and of �2 by −Δ�

two rotations represented as unit quaternions @0 and @1 can be ob-

tained by normalizing their sum @B = @0 + B6=(@0 · @1)@1, which

corresponds to the unit quaternion closest to their average. The sign

of the dot product is necessary to deal with the double-covering

of ($ (3) by unit quaternions, resulting in the ambiguity that one

element of ($ (3) corresponds to quaternions ±@. A meaningful

average is obtained by choosing signs such that both quaternions

lie in the same hemisphere. Correctly averaging several elements of

($ (3) is signi�cantly more di�cult since a suitable choice of signs

is not always possible and the computation of a Fréchet mean would

be required. However, iteratively accumulating several quaternions

with sign correction is a cheap approximation, which is su�cient to

optimize smooth frame �elds. Feature alignment constraints can be

enforced by projecting the frame of the averaged quaternion onto

the closest aligned one as described in the supplemental material of

[Gao et al. 2017a]. The complete frame �eld optimization algorithm,

iteratively averaging and projecting quaternions, is shown in Al-

gorithm 1. The optimization can either be performed on the entire

mesh, or alternatively be restricted to a submesh, e.g. to obtain a

smooth �eld in a local neighborhood where the topology has been

changed by a repair operation. It should be noted that the matchings

" constrain the frame �eld topology according to their induced

monodromies but only specify sector angles modulo 2c . We did not

observe undesired topology changes in our experiments such that

development of alternatives with full topology control is left for

future work.

5.2 Discrete Local Meshability Repair

The core operation of local meshability repair is the arc zipping

operation, such that we will �rst clarify its discrete counterpart.

Discrete Arc Zipping. Consider a triangle mesh of disc topology

/ ⊂ ) that is formed by a subset of triangles of T . For simplicity,

assume that all matchings are identity. By changing the matchings

of all dual edges that pierce triangles of / in a consistent orientation

to"I ∈ O, only monodromies at the boundary m/ are changed since

dual cycles of interior edges always traverse / in both directions

such that"I and"
−1
I cancel out. Choosing two vertices E0 , E1 on

m/ , partitions the boundary into two arcs �1 and �2, both oriented

from E0 to E1 . Combining the monodromy change with alignment
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Fig. 16. (a) Two singular arcs of index ±� touch at vertex E. (b) Discrete

singular arc detachment (DT1) is realized by discrete unzipping. (c) Discrete

zipper node detachment also corresponds to discrete zipping. Both require

a fan of triangles / bounding a sector of suitable flow behavior.

of the frame �eld to �1 and �2 – choosing a frame axis consistent

with"I – alters the zero index of edges of �1 to � and those of �2

to −� , while not changing the index of any other edge in T . Hence,

we have unzipped a regular streamline to two singular arcs merging

at zipper nodes given by E0 and E1 . Reverting the process by an

inverse"−1I change corresponds to zipping, both shown in Fig. 15.

The general discrete arc zipping operation is speci�ed by the tuple

[/,�1, �2,Δ� ] consisting of an oriented disc topology triangle sur-

face / , parallel oriented arcs�1, �2 partitioning m/ , and the desired

index change Δ� . From this information, novel matchings for dual

edges crossing / are determined such that the index of edges of �1

increases by +Δ� , while the index of edges of�2 decreases by −Δ� . A

prerequisite of discrete arc zipping is that all interior edges of / are

non-singular such that their monodromy is the identity. In practice,

we do not require that the neighborhood of / is represented in a

common chart as assumed in the introductory example. Consider-

ing that the target indices and thus the required monodromies are

known, we can uniquely determine the single unknown matching

of a boundary edge of m/ through Eqn. (2). Proceeding with edges of

a single unknown matching until all matchings of / are determined

coincides with the chart zippering procedure of [Liu et al. 2018].

Establishing Meshable Edges. Edges of the tetrahedral mesh rep-

resent singular arcs and consequently might su�er from all four

meshability defects discussed in Sec. 4.2. Defects of a single edge

48 9 can be resolved locally by the discrete analog of modi�cations

discussed in Sec. 4.2.

vi=va

vj=vb

tijkA1

A2

vk

A discrete (D1) defect, i.e. an 48 9 with com-

pound monodromy `8 9 , is �xed by discrete

arc unzipping on any incident triangle C8 9: ,

where only 48 9 is singular or feature con-

strained. The monodromy of 48 9 is turned

into a meshable one at the cost of generat-

ing a new singular arc formed by 48: and

4: 9 , as shown on the right. If all incident

triangles have additional singular or feature

edges, a valid candidate triangle can always

be obtained by a 1 : 3 split of any tetrahedron incident to 48 9 .

A discrete (D2) defect, i.e. �ow misalignment is resolved by �rst

splitting all tetrahedra exhibiting multiple con�icting alignment

constraints, and then obtaining a feature and singularity aligned

smooth �eld through Algorithm 1 restricted to the one-ring of 48 9 .

After aligning the �eld to all singular edges and features, non-

constant footprint defects of type (D3) can be identi�ed by comput-

ing sector angles following Eqn. 4. Adding a singular node at each

vertex where the footprint changes, resolves all defects of type (D3).

va

vb

A1

A2

Discrete (D4) defects, i.e. constrained non-

quad sectors incident at 48 9 , might be caused

by singular edges with non-meshable in-

dex � ≥ 1 or sector angles less than 1
2c

sandwiched between feature triangles. Un-

zipping arcs with index Δ� = 1
4 on a trian-

gle C8 9: inside the non-meshable sector in-

creases the sector angle such that repeated

execution is su�cient to resolve all non-

meshable sectors. Suitable triangles within

non-meshable sectors can always be ensured

through edge splits. A subsequent (D2) repair is necessary to war-

rant �eld alignment of newly created singular arcs.

Establishing Meshable Vertices. Vertices of the tetrahedral mesh

represent singular nodes and consequently might su�er from non-

meshability of parabolic sectors formed by zipper con�gurations

as discussed in Sec. 4.3. The required repair operations (T1)-(T5)

discussed in Sec. 4.4 are all specializations of arc zippering, enabling

discrete counterparts achieving local meshability of a vertex E8
within its one-ring of incident tetrahedra.

vi

vj

A1

vk

A2

vh1

vh2

vh3

Z

Given a singular edge 48 9 , the discrete

singular arc detachment (DT1) is realized

by discrete arc unzipping as illustrated in

Fig. 16ab. It requires a fan of triangles

formed by E8 and a chain of one-ring neigh-

bors E 9Eℎ1
. . . Eℎ<E: such that (i) edges 48 9

and 48: are of identical index, (ii) all interior

edges 48ℎ1
. . . 48ℎ< as well as edges along the

chain 4ℎ;ℎ;+1 are regular and non-feature,

and (iii) the streamline entering through 4 98 forms a hyperbolic

sector with the streamline exiting along 48: represented by the ho-

lonomy of the frame �eld restricted to the triangle fan. For a given

incoming singular edge 4 98 we perform a breadth-�rst search to

determine both, a suitable outgoing singular edge 48: and the corre-

sponding fan of triangles. We rely on a dual path search such that

the �eld holonomy is well-de�ned by the matchings.

vi

vj

vk

P0

P1

Ps

A valid triangle fan for the discrete arc

unzipping operation is then obtained either

by triangles forming the side walls of the

dual region spanning from 4 98 to 48: corre-

sponding to paths %1, %2, or alternatively

by splitting edges of all interior triangles of

the dual region resulting in path %B , all de-

picted on the right. We run the breadth-�rst

search from all tetrahedra incident to 48 9 and

exclude dual edges corresponding to feature surfaces with a �ow

parallel to 48 9 . In order to avoid spurious edge pairs not incident

to a common hyperbolic sector, possible since 2c rotations are not

disambiguated, the search is required to roughly follow streamlines.

We forbid dual edges, where the frame axis corresponding to the
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streamline in question deviates by more than V = 100◦ from the

outgoing normal vector of its primal face.

vi

vj

A1

vk

A2

vh1

vh2
Z

In addition to interior hyperbolic sectors

formed by 4 98 and 48: , the path search also

considers the case of a boundary truncated

hyperbolic sector, where the streamline ex-

its transversally, as depicted on the right.

If multiple valid detachment candidates are

found, we prioritize the boundary case and

otherwise choose randomly.

The discrete zipper node detachment (DT2), depicted in Fig. 16c,

is mostly identical to (DT1), except that edges 48 9 and 48: of op-

posite index are searched that form an outgoing parabolic sector.

Discrete arc unzipping (DT3) and discrete parabolic sector repair

(DT4) are identical to (DT1) and (DT2) respectively, except that

di�erent indices for both participating sector-edges are allowed.

va
vb

A1

A2

Z

v

ZZ

Discrete transversal arc unzipping (DT5)

starts from a pair of edges forming a par-

abolic sector represented by a triangle fan.

However, discrete arc unzipping is per-

formed on a transversal/ as depicted on the

right. To simplify the implementation, we do

not explicitly search the edges correspond-

ing to transversal separatrices incident at E8 .

Consequently, in contrast to the continuous

(T5) operation its discrete counterpart might

create novel parabolic sectors. Those will be

resolved subsequently by (DT4) at the cost

of unnecessary isolated zipper nodes, which

are e�ectively eliminated by the continuous

singularity optimization described in Sec. 5.3. In agreement with

the continuous operations, we forbid arc unzipping (DT1),(DT3)

with negative Δ� whenever novel parabolic sectors are generated.

It is reverted if an exhaustive enumeration of all parabolic sectors

between pairs of (singular/feature) edges reveals novel defects.

v0

v0 v1

Resolving Zipper Vertices. Non-isolated

zipper vertices can be iteratively un-

zipped by the (DT3) operation as de-

picted on the right. Identically to the

continuous setting, unzipping with neg-

ative index through singular vertices

might be forbidden, triggering a (DT4)

reversal. Isolated zipper vertices are dif-

ferent in the sense that the unzipping

path is not constrained to a given set

of mesh edges. Consequently, we per-

form a �ow-guided dual path search to

determine an optimal unzipping arc. The objective is to �nd either a

transversal boundary triangle, or an anti-parallel zipper node of iden-

tical type since in both cases the zipper node can be resolved. The

path should also be short and roughly aligned to the �eld. Assuming

a coordinate system where the unzipping direction is along D, we

explore dual paths w.r.t. the distance function 32 = D2 + B · (E2 +F2)

with B = 100 such that traveling close to the streamline is preferred

Fig. 17. Despite perfectly smooth streamlines (le�), the singular arcs on a

tetrahedral mesh can be highly noisy (right). The misalignment of field and

singular arcs causes a large number of zipper nodes (red).

over deviating from it. The D, E,F values are computed by integrat-

ing the frame �eld along the dual path. The resulting path search

is identical to the breadth-�rst search, except that we follow the

priority dictated by the distance function. To exclude paths, which

would require huge �eld perturbations, we again forbid dual edges

which deviate by more than V = 100◦ from the localD-direction. The

dual path is not allowed to cross parallel feature surfaces, causing

new parabolic sectors. ‘The search is restricted to a feature surface

if at least one arc is tangential to it. It terminates when the �rst

transversal boundary or appropriate complementary zipper node

is found. Once a valid path is available, unzipping via (DT3) can

be performed, where based on the previously computed (D, E,F)

coordinates we minimize spiraling e�ects, not relevant for local

meshability but potentially in�uencing global meshability and the

distortion of the integer-grid map.

5.3 Handling Noisy Singularity Graphs

While the streamlines of frame �elds on tetrahedral meshes are

su�ciently smooth, this is often not true for discrete singularity

graphs, as illustrated in Fig. 17. The set of mesh edges often does

not admit a smooth approximation of �ow-aligned arcs. Moreover,

optimization of frame �elds with the popular spherical harmonics

formulation [Huang et al. 2011; Palmer et al. 2020] does not enforce

alignment of the �eld to singular arcs. One remedy consists in re-

optimizing the frame �eld with additional alignment constraints

once the singularities are known, e.g. with Alg. 1. However, such an

approach is highly detrimental to the �eld quality since the smooth

streamlines are forced to align to the noisy singular edges. Conse-

quently, we advocate for the opposite – optimizing the geometry of

the singularity graph to align to the (more reliable) streamlines. We

formulate an optimization problem, where vertices of the tetrahedral

mesh deform in order to align singular arcs to the �ow. Moreover,

we include terms to continuously resolve chains of zipper nodes,

achieve smooth singular arcs, prevent �ipped tetrahedra, and pre-

vent singular arcs from getting too close to each other.

Singularity Relocation. Let G8 , ?8 ∈ R
3 be the new and current

position of the singular vertex E8 , also including all vertices incident

to singular edges. The optimal relocation of E8 ∈ +( is posed as the
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(a) (b) (c) (d)

Fig. 18. Algorithm Local Meshability: (a) The input frame field contains non-meshable nodes (black and red), and non-meshable arcs (yellow). The yellow arc

is repaired by first adding quad sectors at individual edges and then detaching arcs at black vertices, shown in closeups. (b) Result a�er one iteration of

singularity repair, resolving various defects. (c) A�er Stage I, two isolated zipper nodes (red) remain. (d) Locally meshable result a�er Stage II.

following non-linear optimization problem with linear constraints

for feature preservation:

minimize
G

�0 + �B + �2 + �3 + �A

subject to G8 − ?8 = 0, ∀E8 ∈ +�

(G8 − ?8 ) × C8 = 0, ∀48 9 ∈ ��

(G8 − ?8 ) · =8 = 0, ∀C8 9: ∈ )� ,

where C8 ∈ R
3 is a feature tangent incident to E8 and =8 the normal

vector of an incident feature surface.

Alignment energy �0 – Aligning singular edges 48 9 ∈ �( with the

average frame �eld direction 38 9 of incident tetrahedra.

�0 =
F0

B

∑

48 9 ∈�"

| (G8 − G 9 ) × 38 9 |
2

;48 9

with the edge length ;48 9 , and �" ⊂ �( being the subset of singular

edges with meshable monodromy.

Shrink energy �B – Contracting singular edges of non-meshable

monodromy, or incident to zipper nodes both combined in �/ ⊂ �( .

�B =
FB

B

∑

48 9 ∈��∪�/

�

�G8 − G 9
�

�

2

;48 9

Curvature energy �2 – Acting as smoothness regularizer by mini-

mizing curvature of singular arcs with meshable monodromy

�2 =
F2

B

∑

48 9 ,4 9: ∈�"

�

�G8 + G: − 2G 9
�

�

2
/(;48 9 + ;4 9: )

Deformation energy �3 – Preventing degenerate or �ipped tetra-

hedra and guarding the surface normal against �ipping.

�3 = F3

∑

E8 ∈+(

∑

28 9:; ∈�

log
CA (�)C �C )

34C (�C )
2
3

where �C denotes the Jacobian of deforming a tetrahedron to the

regular one. To prevent orientation �ips of surface normals, for each

boundary vertex E8 we add a fan of virtual tets by connecting all

incident boundary triangles to a virtual vertex extruding E8 along

its normal direction according to the local average edge length.

Repulsion energy �A – Preventing singular arcs resulting from

zipper node repair from getting geometrically too close to each

other, acting on all vertices on the newly created arcs +'

�A =
FA

B

∑

E8 ∈+'

�A8

�A8 =

{ 1
238
|G8 − ?̂8 |

2 if 38 ≤ ;<8=

0 otherwise

with ?̂8 =
?8+?

′
8

2 + ;<8=
?8−?

′
8

|?8−?′8 |
being the target point of the repulsion,

computed from the point ? ′8 closest to E8 on another singular arc, 38
denoting its distance, and ;<8= being the minimal target edge length

of singular vertices on the arc of E8 .

The default parameters areF0 = FB = F2 = 1 andFA = 0.1,F3 =

0.01 and B = 3
√

|T | is chosen such that the overall objective is scale

invariant. We use TinyAD [Schmidt et al. 2022] for automatic di�er-

entiation and the NewtonSolver of CoMISo [Bommes et al. 2012]

for optimization. At the end of the singular vertex relocation, we

employ Alg. 1 to smooth the frame �eld within a 2-ring neighbor-

hood of singularities, aligning to features but not to singular arcs.

The singularity relocation restricts modi�cations to the one-ring

of the initial mesh and is thus often insu�cient to obtain satisfac-

tory results. However, alternating the singularity relocation with

remeshing e�ectively unlocks the required degrees of freedom.

Mesh Improvement. We adopt an operator-based strategy similar

to TetWild [Hu et al. 2018], which consists of three passes: edge

splitting, edge collapsing, and edge swapping. Restricting the mesh

improvement to the 2-ring neighborhood of singularities proved

su�cient in our experiment. The target edge length for vertices

– considered during edge collapses and splits – is chosen as the

average length of all incident edges. Edge collapses are forbidden

if they alter the topology of features, move a vertex away from a

feature, or generate con�icting alignment constraints.

5.4 Practical Algorithm

Motivated by the large number of zipper nodes caused by noisy

singularity graphs on tetrahedral meshes, our practical algorithm

proceeds in two stages, illustrated in Fig. 18.
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Stage I. alternates between the singularity repair of Sec. 5.2 and

the singularity relocation of Sec. 5.3. However, to avoid an exces-

sive number of singular arcs, the repair of isolated zipper nodes is

suspended. In this stage, we do not enforce alignment of frames to

singular arcs. Only in the singular vertex repair steps we temporar-

ily align in order to identify sectors correctly. In Stage I we also do

not repair edges of compound monodromy since these are typically

resolved by the shrinkage term of the singularity re-location, getting

smaller and smaller until being collapsed in the remeshing. While

not important for local meshability, the collapse if often preferable

for global meshability. After performing #1 (default 12) iterations

in Stage I, the algorithm proceeds with Stage II.

Stage II. also alternates between singularity repair and singularity

relocation. However, this time includes the repair of zipper nodes

and non-meshable edges of compound type. Since new singular arcs

resulting from unzipping can be noisy, in Stage II we perform several

iterations of singularity relocation in a row (default 6). Stage II

terminates when all vertices and edges are locally meshable, aligning

the �eld to all resulting arcs with Alg. 1 as a last step.

6 INTEGER-GRID MAP CONSTRUCTION

6.1 Seamless Map

Given a locally meshable frame �eld F on tetrahedral cells and

corresponding matchings " on dual edges, the next step in our

hexahedral meshing framework consists in generating a locally

injective seamless map 5 : R3 → R3, which is needed for integer-

quantization. A seamless map can be obtained by solving a Poisson

problem in the spirit of [Nieser et al. 2011], including all feature

alignment and cut constraints but ignoring integer constraints. Fre-

quently, the result is a degenerate map with inverted elements, and

improved robustness can be achieved by adding a post-process that

targets local injectivity [Garanzha et al. 2021]. In our experiments,

we sometimes observed that [Garanzha et al. 2021] �nds a locally in-

jective map but does not obey the frame �eld topology. As discussed

before, the matchings only constrain indices (and sector angles) up

to additional integers inside the domain and half-integers on the

boundary, allowing e.g. a singular arc of index − 1
4 to change into

one of index 3
4 , cf. Fig.13 of [Garanzha et al. 2022].

Integrable Frame Field Optimization. To prevent such failure cases,

we propose a novel seamless map optimization based on integrable

frame �elds and a smoothness regularizer. The main di�erence com-

pared to the approach above is that we do not allow any inverted

element throughout the optimization and e�ectively prevent index

changes that are typically caused by untangling inverted elements

of the initial map. Hence, instead of starting the optimization from a

conforming but potentially degenerate map, we do the opposite and

start from a locally injective but non-conformingmap. Dropping con-

formity is equivalent to giving up the integrability of the frame �eld.

Hence, initialization with any target frame �eld satisfying det � > 0

is possible. More precisely, for each tetrahedron C8 , we optimize a

Jacobian matrix �8 ∈ R
3×3. Observing that we are targeting a map,

which sends the tangent vectors of a frame onto coordinate axes,

i.e., �8�8 = � , the per-element initialization is simply �8 = �−18 . This

initial map is locally injective since det �8 > 0 and det �8 = 1/det �8 .

Then we optimize a deformation objective with barrier behavior,

tending to∞ for degenerating elements. In all our experiment we

use the symmetric Dirichlet energy �(� =

∫

Ω
(� (� )3+ with

(� (� ) =

{

| |� | |22 + ||�
−1 | |22 det � > 0

∞ det � ≤ 0
(5)

Integrability of a piecewise linear map requires that the (matched)

gradients of two neighboring tetrahedra 28 and 2 9 are identical

when projected onto their common triangle C8 9 , leading to linear

constraints

%8 9 (�
)
8 −"

−)
8 9 �)9 ) = 0̄ (6)

with %8 9 ∈ R
2×3 projecting gradients onto a basis of the plane of C8 9 ,

matchings"8 9 ∈ O, and the matrix of zeros 0̄ ∈ R2×3. Optimizing

�(� subject to linear integrability constraints and feature alignment

constraints, often results in a locally injective seamless map. How-

ever, there is neither a guarantee on obtaining a locally injective

map, nor on correctly re-producing the frame �eld topology. Due

to the non-convex objective function, the optimization might con-

verge to an infeasible point, never reaching an integrable frame �eld.

Index changes, as discussed above, can also happen in this formu-

lation. To further improve correct re-production of the frame �eld

topology, we add (i) a smoothness regularizer �( =

∫

Ω
| |∇� | |223+ ,

and (ii) ensure in the line search of the optimizer that we never pass

through an inverted state – which is necessary to change the index

assuming conformity. A candidate step G +CΔG is truncated to a step

length C such that � + BΔ� > 0 for B ∈ [0, C] is valid for all tetrahedra.

Implementation Details. The integrable frame �eld is optimized

with a Truncated Newton Method [Wright et al. 1999] using a pro-

jected PCG linear solver to enable scalability to large tetrahedral

meshes and accurate constraint satisfaction. All constraints feasi-

ble at the start are handled by the projected PCG, while integra-

bility constraints, which are infeasible at the start, are included

with quadratic penalty terms �� , leading to the overall objective

� = �(� + F(�( + F��� . As a �nal heuristic, which proved valu-

able in our experiments, we optimize a sequence of optimization

problems, where we successively increaseF� and decreaseF( . All

derivatives are computed algorithmically with [Schmidt et al. 2022],

using Eigen [Guennebaud et al. 2010].

6.2 Integer-Grid Map

Given a valid seamless map, we �rst obtain a valid quantization

with the robust algorithm of [Brückler et al. 2022a] using the motor-

cycle complex. The quantization constraints are then added to the

optimization of the seamless map to compute a valid integer-grid

map. Since the seamless map of the previous step serves as a locally

injective initialization, we can immediately optimize a conforming

piecewise linear map with the barrier energy �(� , expressed with

vertex coordinates. The linearly constrained non-convex problem

is optimized with IPOPT [Wächter and Biegler 2006]. In our exper-

iments, the integer-grid map construction succeeded in all cases,

where a valid seamless map was obtained. However, for extremely

coarse quantizations, which require large geometric distortions, fail-

ures can be observed since the tetrahedral mesh might not even

have su�cient degrees of freedom to admit a locally injective map

subject to the quantization constraints.
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7 EVALUATION

7.1 HexMe Dataset

We evaluate the robustness of our hexahedral meshing framework

bymeans of the HexMe dataset [Beaufort et al. 2022], which contains

189 tetrahedral mesheswith feature tags inherited fromCADmodels,

and is speci�cally designed for consistent and practically meaningful

evaluation of hex meshing algorithms. We compare our algorithm

with two state-of-the-art frame �eld based methods [Li et al. 2012]

and [Jiang et al. 2014], both performing singularity repair targeting

edge meshability. For each combination of model and algorithm, we

analyze four aspects, i.e. (i) edge meshability, (ii) vertex meshability,

(iii) validity of seamless map, and (iv) validity of integer-grid map, as

depicted in Fig. 19 and described in more detail below. Our statistics

are binary in the sense that all edges of a model need to be meshable

to qualify as an edge-meshability success. Binary success/failure

counting is justi�ed by the fact that a single non-meshable local

neighborhood will immediately prevent the generation of an integer-

grid map. Please note that our evaluation criteria are sorted in a

way that the success rates can only decrease since prior ones are a

necessary condition for latter ones.

0

0.25

0.5

0.75

1

Edge Meshability Vertex Meshability Valid Seamless Map Valid IGM 

58.2%58.2%

99.5%100.0%

2.1%2.1%

11.1%

58.2%

2.1%2.1%
7.4%

57.7%

[Li et al . 2012] 
[Jiang et al. 2014]
Ours

Fig. 19. Comparison with [Li et al. 2012] and [Jiang et al. 2014] on the

HexMe dataset. The success rate w.r.t. edge meshability, vertex meshability,

valid seamless map and valid IGM on a per model basis is depicted.

Initialization. For fairness of the comparison, all three methods

are initialized with identical per-vertex octahedral �elds, generated

by [Ray et al. 2016], with �eld alignment constraints for all feature

edges/faces. Singular tetrahedra are split before re-sampling the

�eld on tetrahedra by interpolating and projecting SPH coe�cients.

Local Edge Meshability. Local meshability of edge one-rings is

veri�ed according to the index and sector computations of Sec. 5.2,

requiring � < 1 and that all sectors are of quad type. Our algorithm

ensures edge meshability for all 189 HexMe models, while [Li et al.

2012] and [Jiang et al. 2014] succeed for 109 and 110 models respec-

tively. While repairing all compound singular arcs, polar sectors

enforced by feature constraints are not handled.

Local Vertex Meshability. Local meshability of a vertex is veri�ed

by explicitly constructing a seamless map with the technique of

Sec. 6.1 but restricted to the one-ring neighborhood of tetrahedra.

(0) (b)

Fig. 20. (a) Singularity graph of n04b_transition_prism a�er correction

with [Li et al. 2012] and [Jiang et al. 2014]. (b) Our singularity graph. Red

and black edges are not locally meshable. Green and blue edges represent

singular edges of valence -1 and +1. Other colored edges are features and

zipper nodes are colored in red.

While [Li et al. 2012] and [Jiang et al. 2014] obtain 14 and 21 suc-

cessful results, respectively, 188 out of 189 models pass the vertex

meshability test for our algorithm. The large improvement is not

surprising since none of the former methods explicitly repairs non-

meshable vertices. Only i28b_gc_tire_1218 did not succeed since

the huge number of zipper nodes caused by the highly detailed

pro�le of the tire caused a runtime beyond our time limit of 48h.

Consequently, the sole failure case is not related to the theoretical

gap of potentially being unable to resolve a zipper node.

Global Meshability. Necessary and su�cient conditions for global

meshability are unknown. However, global meshability can be ver-

i�ed by the generation of a locally injective seamless map and re-

quiring that the frame �eld topology and feature alignment are pre-

served. Both state-of-the-art methods generate seamless maps with

the non-robust method of [Nieser et al. 2011], further decreasing the

success rate to only 4 valid seamless maps. Our robust seamless map

generation of Sec. 6.1 veri�es that 110 out of 188 locally meshable

�elds are actually globally meshable. Fig.20(a)/(b) shows the singu-

larity graphs of n04b_transition_prism after the correction with

our method in comparison to the repair of prior methods, not resolv-

ing zipper con�gurations. Fig.21 shows i29u_bracket, where our

�eld is locally meshable but not globally meshable. Our integer-grid

map construction succeeds for all models with valid seamless map,

enabling topologically valid hexahedral meshes, preserving all fea-

tures of the input. Fig. 24 shows a subset of the output hex meshes,

while all 110 are available as supplemental material. We improve

the geometric quality of hexahedral meshes using Mesquite [Brewer

et al. 2003]. Statistics of the illustrated examples including input

mesh complexity, minimum/average scaled Jacobian, and runtime

of di�erent parts of the algorithm can be found in Table 1. Timings

have been measured for a single thread on an AMD EPYC 7742 CPU.

Our local meshability ensuring algorithm is time-e�cient. It mostly

involves local repair operations, and the continuous singularity

optimization step including remeshing is restricted to the 2−ring

neighborhood of the singularity graph. However, downstream steps

of the hex meshing framework, e.g. the generation of seamless and

integer-gird maps are signi�cantly more expensive. The time costs

to ensure local meshability ranges from 10 to 451 seconds, while
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Fig. 21. Our algorithm is able to ensure local meshability for complex objects

like i29u_bracket. However, a hexahedral mesh could not be generated

due to remaining global meshability defects.

the seamless map generation takes up to 3373s, and the IGM gener-

ation up to 41475s. The dominating time cost of map construction

is sometimes caused by sub-optimally positioned singularities that

cause large distortions in the map.

Table 1. Statistics and Timings.

Mesh #Tet Scaled Jacobian LM-Repair (s) S-Map (s) IGM (s)

i06u_m6 189547 0.218/0.977 73 1992 5716

i12u_s5 107154 0.038/0.963 52 974 1085

i14b_s7 70968 0.133/0.954 327 1440 4097

i15b_s8 132749 0.268/0.973 278 779 5785

i18b_s22 295584 0.132/0.969 451 3373 41475

i25c_s40 24305 0.126/0.958 16 195 434

n08c_pentapyr 6144 0.269/0.926 31 166 101

n09c_pyramid 7015 0.264/0.948 10 39 30

n10u_qtorus_cyl 67154 0.307/0.974 279 829 536

s04b_tetrahedron 36329 0.123/0.973 23 93 1059

s08c_cross_cyls_dr 19747 0.231/0.982 36 91 84

HexMe Categories. We further analyze global meshability of our

algorithm w.r.t. di�erent categories of the HexMe dataset, depicted

in Fig. 22. While global meshability can be obtained for many mod-

els from the simple and nasty categories, only for roughly one third

of the industrial models valid IGMs can be constructed. When ex-

cluding box-embedded models with interior feature constraints, the

success rate increases signi�cantly, revealing that those are the

most challenging in terms of global meshability. The success rates

of curvature-adapted and uniform tetrahedral meshes are identi-

cal, verifying that our algorithm does not signi�cantly depend on

the input tetrahedral mesh. This is not surprising since remesh-

ing is performed whenever necessary to enable local singularity

repair operations, or to improve the geometry of singular arcs.

However, there are still sometimes dif-

ferences caused by the initial tetrahe-

dral mesh. The initial frame �elds might

be di�erent, e.g. being non-globally-

meshable for s16u_torus shown on

the right, while the corresponding

curvature-adapted tet mesh s16c_torus o�ers an initial �eld with-

out twisted singular curves, enabling a globally meshable �eld.

Parameters. For benchmarking local meshability, we use default

parameters for all experiments. However, for benchmarking global

meshability, parameter tuning enables 20 additional success cases.

A major factor is the dual path search to unzip isolated zipper nodes.

While the concrete path is irrelevant for local meshability it might

Industrial

Nasty

Simple

Industrial (w/o box)

Nasty (w/o box)
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Curvature-adapted

Uniform

Box-embedded
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Fig. 22. Number of valid vs.invalid seamless maps obtained in each category.

have an impact on global meshability. Sometimes, altering the num-

ber of iterations of Stage I, and/or changing the �eld alignment

weight enables a globally meshable �eld. During quantization we

target #ℎ4G0 = 100: for all models except for i17u_s20, which

required #ℎ4G0 = 600: .

7.2 Additional Experiments

Stress Test. We tested robustness of our pipeline on the tetrahedral

mesh of a sphere with a random frame �eld, generated by sampling

random unit quaternions. Fig. 23a depicts the singularity graphs and

streamlines of the input random frame �eld, while Fig. 23(b) shows

the locally meshable result of our algorithm, successfully resolving

all defects.

(0) (b)

Fig. 23. Stress test. (a) A random input field and its singularity graph. Black

edges are compound singular edges and black vertices are invalid singular

nodes, while red vertices are zipper nodes. (b) The locally meshable output

field and its singularity graph.

Coarse Block Decomposition. Frame �eld based methods o�er

singularities suitable for coarse block decompositions. Our algo-

rithm minimizes the number of additionally generated singular arcs,

and combined robust map construction and robust quantization of

[Brückler et al. 2022b] is thus capable of generating coarse block

decompositions, as demonstrated in Fig. 25.
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s08c_cross_cyls_dr n10u_qtorus_cyl

n09c_pyramid n08c_pentapyr

i12u_s5 i25c_s40

i14b_s7 s04b_tetrahedron

i15b_s8 i18b_s22

Fig. 24. Several hex meshes automatically generated by our method. Feature

nodes/arcs/surfaces are colored and preserved as in the input tet meshes.

|� | = 100: , |� | = 287 |� | = 1: , |� | = 146 |� | = 1, |� | = 138

Fig. 25. Base complexwith number of blocks |� | ofmeshes obtained through

quantization with di�erent target complexity |� |. A good compromise is

o�ered by |� | = 1: , while the finer one has excessively many blocks and

the coarser one is severely distorted.

8 CONCLUSION & FUTURE WORK

We have presented the theory of locally meshable frame �elds and a

novel algorithm to convert a given frame �eld into a locallymeshable

one. While it signi�cantly improves the robustness of frame �eld

based hexahedral mesh generation algorithms, additional e�ort will

be required to obtain full robustness.

Local Meshability. We plan to establish strict termination guar-

antees for the resolution of zipper nodes, and include anti-quad

con�gurations into the theory and the algorithm.

Global Meshability. Since local meshability is necessary but not

su�cient for global meshability, the obvious next step will be to tar-

get global meshability. A direct generalization of [Myles et al. 2014]

is impossible due to the non-integrability of surfaces of 3D frame

�elds. However, attempting to generate the motorcycle complex

[Brückler et al. 2022b] directly from a frame �eld is nevertheless

a promising research direction. Such a method would inevitably

require additional repair mechanisms since in contrast to the 2D

setting, singularity and feature constraints can prevent existence of

a valid motorcycle complex, even for locally meshable frame �eld.

Locally Injective Maps. For a given globally meshable �eld, none

of the existing techniques can guarantee to �nd a seamless map

of identical topology. Consequently, future work is required to ob-

tain stronger guarantees, also regarding preservation of frame �eld

topology.
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