
HexHex: Highspeed Extraction of Hexahedral Meshes
TOBIAS KOHLER, University of Bern, Switzerland
MARTIN HEISTERMANN, University of Bern, Switzerland
DAVID BOMMES, University of Bern, Switzerland

9% Runtime 
58% RAM

5% Runtime 
9% RAM

3% Runtime 
7% RAM

Fig. 1. When evaluated on the representative HexMe dataset [Beaufort et al. 2022], our novelHexHex algorithm extracts a hexahedral mesh from a tetrahedral
mesh and locally injective integer-grid map significantly faster than the state-of-the-art HexEx [Lyon et al. 2016] while also using less memory. For coarse
inputs where the resulting hex-mesh contains notably fewer hexahedral elements (=𝐶H) than tetrahedral element in the input (=𝐶T), HexEx takes up to 30
times longer than our HexHex. Since HexHex scales particularly well for large hex-to-tet ratios 𝛿 =

|𝐶H |
|𝐶T |

, the speedup increases to an approximate factor of 50
for 𝛿 ≈ 10, while at the same time a reduction in peak-memory usage of over one order of magnitude can be observed.

Modern hexahedral mesh generation relies on integer-grid maps (IGM),
which map the Cartesian grid of integer iso-surfaces to a structure-aligned
and conforming hexahedral cell complex discretizing the target shape. The
hexahedral mesh is formed by iso-surfaces of the map such that an extrac-
tion algorithm is needed to convert the implicit map representation into an
explicit mesh. State-of-the-art algorithms have been designed with two goals
in mind, i.e., (i) unconditional robustness and (ii) tolerance to map defects
in the form of inverted or degenerate tetrahedra. Because of significant ad-
vancements in the generation of locally injective maps, the tolerance to map
defects has become irrelevant. At the same time, there is a growing demand
for efficiently handling significantly larger mesh complexities, unfortunately
not well served by the state-of-the-art since the tolerance to map defects
induces a high runtime cost. Consequently, we present HexHex, a novel
(unconditionally robust) hexahedral mesh extraction algorithm for locally in-
jective integer-grid maps designed for maximal performance and scalability.
Key contributions include a novel and highly compact mesh data structure
based on so-called propellers and a conservative rasterization technique,
significantly reducing the number of required exact predicate tests. HexHex
not only offers lower asymptotic runtime complexities from a theoretical
perspective but also lower constants, enabling in practice a 30x speedup
for medium-sized examples and a larger speedup for more complex inputs,
specifically when the hex-to-tet ratio is large. We provide a C++ reference

Authors’ Contact Information: Tobias Kohler, University of Bern, Bern, Switzerland,
tobias.kohler@unibe.ch; Martin Heistermann, University of Bern, Bern, Switzerland,
martin.heistermann@unibe.ch; David Bommes, University of Bern, Bern, Switzerland,
david.bommes@unibe.ch.

This work is licensed under a Creative Commons Attribution 4.0 International License.

implementation, supporting multi-core parallelization and the extraction of
curved (piecewise-linear) hexahedral mesh edges and faces, e.g., valuable
for subsequent higher-order mesh generation.

CCS Concepts: • Applied computing→ Computer-aided design; • Com-
puting methodologies→ Volumetric models.

Additional Key Words and Phrases: hexahedral meshing, integer-grid map,
optimization

1 Introduction
Hexahedral meshes are a popular choice for volumetric domain
discretization [Pietroni et al. 2022], specifically for simulation in
engineering applications with a high demand for performance and
accuracy. For high-quality hexahedral mesh generation, there is
a lack of automatic algorithms such that semi-manual workflows,
where a human designs a coarse block decomposition, are still the
industry standard. However, Integer-Grid Map (IGM) based algo-
rithms [Liu et al. 2018; Nieser et al. 2011] are a promising research
direction since state-of-the-art methods [Liu and Bommes 2023] are
becoming increasingly robust while delivering high-quality block
decompositions comparable to those manually designed by humans.

Since an IGMencodes the hexahedralmesh only implicitly through
its integer iso-contours in the co-domain of the map, as explained
in more detail in Section 3.2, an algorithm is needed to extract
the explicit hexahedral mesh. Compared to standard contouring
of implicit iso-surfaces, e.g. through Marching Cubes [Lorensen
and Cline 1987] or Dual Contouring [Ju et al. 2002], there are two

HTTPS://ORCID.ORG/0009-0008-9425-6846
HTTPS://ORCID.ORG/0000-0002-1757-7661
HTTPS://ORCID.ORG/0000-0002-3190-1341
https://orcid.org/0009-0008-9425-6846
https://orcid.org/0000-0002-1757-7661
https://orcid.org/0000-0002-3190-1341
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

2 • Kohler et al.

major differences, which complicate the task: (i) IGMs correspond
to an arrangement of many iso-contours where explicit intersec-
tion resolution is required, and (ii) singularities of the hexahedral
mesh necessitate a map representation with coordinate charts and
transition functions, typically inducing numerical discontinuities
in floating-point representations [Brückler et al. 2022; Mandad and
Campen 2019].
The state-of-the-art HexEx algorithm [Lyon et al. 2016] offers a

robust solution through a sanitization pre-process to resolve numer-
ical discontinuities in combination with exact geometric predicates,
and explicit tracing of intersection curves (edges of the hexahedral
mesh). The algorithm guarantees to correctly extract the uniquely
defined connectivity of a locally injective piecewise-linear IGM, i.e. a
map defined through a tetrahedral mesh, which does not contain
degenerate or inverted elements in domain or co-domain. With-
out local injectivity there are no longer strong guarantees but the
HexEx algorithm attempts to tolerate local defects in a process that
annihilates multiply-covered regions caused by inversions. Such a
repair mechanism has been highly valuable during the earlier stages
of IGM research, where local injectivity of the map could often not
be ensured, specifically close to (noisy) singular arcs. Unfortunately,
the tolerance to defects requires redundant storage and tracing of
edges in the corresponding dart representation, which compromises
runtime and memory consumption.

Table 1. Runtimes for models with increasingly more hexahedral cells in
the mesh generation pipeline. Listed are the model name, the number of
hex-cells, and the runtime for generating an IGM and the mesh extraction
as well as the contribution of the latter in the entire pipeline. Our method
performs significantly better for meshes with many hex-cells, no longer
making the extraction a bottleneck. Note that the underlying optimization
problem to generate an IGM actually becomes easier for meshes with more
hex-elements, hence its runtime decrease.

Mesh |H | IGM [s] Extract. [s] Extract. [s] (ours)
i25u 6653 1035.35 3.07 (0.16%) 0.65 (0.03%)
i02c 431752 720.14 48.88 (3.00%) 1.58 (0.10%)
s09u 998730 41.71 105.21 (30.18%) 2.27 (0.92%)
s17c 7903126 28.14 3366.59 (94.59%) 9.72 (4.81%)

One key advantage of IGM-based algorithms over alternative
techniques is that the map construction time does not directly de-
pend on the complexity of the output hexahedral mesh but is mostly
influenced by the structural complexity of the block decomposition.
Hence, generating hexahedral meshes with millions of cells – often
required for practical simulation applications – is comparatively
cheap. Unfortunately, in those scenarios, the hexahedral mesh ex-
traction, where the runtime does directly depend on the output
mesh complexity, becomes a critical bottleneck of the IGM-based
hexahedral mesh generation pipeline as demonstrated in Table 1 for
a few examples.
Thanks to major advances in the generation of locally injective

maps [Garanzha et al. 2021; Nigolian et al. 2023, 2024] and IGMs
[Jiang et al. 2013; Li et al. 2012; Liu and Bommes 2023], the handling
of defects during the mesh extraction has become irrelevant, offer-
ing potential for acceleration. Consequently, we propose the novel

hexahedral mesh extraction algorithm HexHex, which under the
assumption of local injectivity significantly outperforms HexEx in
terms of runtime and memory consumption, without compromising
robustness. For example, as seen in Table 1, for s17c with nearly 8
million hex-elements, the runtime of the mesh extraction is reduced
from nearly one hour, contributing 95% to the entire pipeline’s run-
time, to less than 10 seconds, contributing only 5% to the pipeline’s
runtime.
HexHex extracts a hex mesh through the following three main

(plus optional fourth) steps.
(1) Preprocessing: Numerical inaccuracies in the parametrization

due to the solver’s numerical tolerance are eliminated.
(2) Geometry Extraction: Hex-vertices are extracted by conser-

vatively rasterizing each tet.
(3) Connectivity Extraction: Propellers corresponding to directed

hex-edges are extracted per generator and then traced once
through the parametrization to their opposites.

(4) Piecewise Linear Extraction (Optional): Piecewise-linear edge
arcs, and piecewise-linear face patches are generated during
the connectivity extraction.

The main performance gain in comparison to HexEx result from
(i) a specifically designed conservative rasterization technique for
the vertex extraction (Section 5.2), (ii) a novel propeller data struc-
ture employed in the connectivity extraction, effectively eliminating
the redundancy of the dart representation (Section 4.2), and (iii)
taking advantage of locally constant connectivity configurations
(Section 5.3). In Section 5.6 we show that compared to HexEx the
asymptotic runtime complexity is significantly reduced. More pre-
cisely, assuming a tetrahedral mesh of constant complexity, the
runtime of HexHex depends linearly on the number of hexahedral
cells, while the dependency is quadratic for HexEx.
Our C++ reference implementation1 offers multi-threading, in-

cludes a command line application, a set of simple API functions,
and an OpenFlipper [Möbius and Kobbelt 2012] plugin. The optional
extraction of piecewise-linear edge arcs and face patches provides
a valuable basis for the fitting of higher-order hexahedral meshes
guided by the IGM.

2 Related Work
Hexahedral mesh generation and its one-dimensional lower counter-
part of quadrilateral mesh generation are actively researched topics.
In the following, we will focus on previous work closely related to
our contributions, and refer the reader for a broader overview to the
available excellent surveys [Armstrong et al. 2015; Bommes et al.
2013b; Campen 2017; Pietroni et al. 2022].

Integer-Grid Maps. The notion of an integer-grid map (IGM) has
been introduced in [Bommes et al. 2013a] in the context of quadrilat-
eral mesh generation. However, the underlying idea of parametriza-
tion with coordinate charts, where the transition functions are grid
automorphisms, originates from the earlier work of [Bommes et al.
2009; Kälberer et al. 2007; Ray et al. 2006].
The concept of IGMs has been extended to volumetric domains

[Nieser et al. 2011] for hexahedral mesh generation. Early attempts

1https://github.com/cgg-bern/libHexHex

https://github.com/cgg-bern/libHexHex

HexHex • 3

suffered from non-meshable singularity or feature configurations,
often leading to degeneracies in the IGM [Liu et al. 2018]. Through lo-
cal meshability repair of singular arcs [Jiang et al. 2013; Li et al. 2012]
and singular nodes and geometric features [Liu and Bommes 2023],
the robustness of volumetric IGM techniques has been evolved to
a practically relevant level. Recent major advances in the robust
generation of volumetric maps [Garanzha et al. 2021; Hinderink
et al. 2024; Hinderink and Campen 2023; Nigolian et al. 2023, 2024]
ensure that in case of meshable singularities, a defect-free IGM can
be obtained through the generation of a motorcycle complex [Brück-
ler et al. 2022], robust quantization [Brückler et al. 2022; Brückler
et al. 2024], and elimination of zero-quantized cells [Brückler and
Campen 2023].

Quad/Hex Mesh Extraction. QEx [Ebke et al. 2013] is the state-of-
the-art algorithm for the robust extraction of a quadrilateral mesh
from a given integer-grid map. It introduced the idea of eliminating
numerical discontinuities of IGMs represented in floating-point pre-
cision, which is called sanitization. The sanitization step is essential
to enable provably-correct and unique geometric decisions with the
help of exact predicates [Attene 2020; Richard Shewchuk 1997], e.g.
when tracing edges of the quad mesh in the co-domain of the IGM.
Subsequently, in [Mandad and Campen 2019] the idea of sanitization
has been extended to an algorithm, which projects a floating-point
configuration 𝑥 , satisfying linear constraints𝐴𝑥 = 𝑏 only up to some
numerical tolerance | |𝐴𝑥 − 𝑏 | | < 𝜖 onto a close-by floating-point
configuration 𝑥 with exact constraint satisfaction | |𝐴𝑥 − 𝑏 | | = 0.
The volumetric counterpart of QEx for hexahedral mesh extrac-

tion is HexEx [Lyon et al. 2016]. Both algorithms are conceptually
similar and – in addition to robustness – attempt to tolerate local
defects of an integer-grid map, QEx trough vertex merging, and
HexEx through even more powerful dart annihilation. By the best of
our knowledge, QEx and HexEx are the only published and publicly
available mesh extraction algorithms, which is probably related to
the fact that their implementation is nontrivial and requires the
handling of a multitude of different geometric configurations.
Our novel mesh extraction algorithm Hex2 is strongly inspired

by QEx and HexEx. By including the sanitization step into our algo-
rithm, we inherit the robustness of state-of-the-art mesh extraction
algorithms. However, we deviate from QEx and HexEx by requiring
local injectivity of the IGM, i.e., not tolerating map defects. Relying
on the advances in the robust generation of volumetric IGMs, we
instead target maximal performance.

3 Terminology
In this section, we introduce the required definitions for a mesh and
an integer-grid map (IGM). From now on, we use the abbreviation
Hex2 (= Hex · Hex) for our algorithm to visually better differentiate
it from HexEx.

3.1 Mesh
For our purposes, a (volumetric) mesh is a 3-dimensional polytopal
complexM = (𝑉 , 𝐸, 𝐹,𝐶) of (0−dimensional) vertices𝑉 , each with a
position 𝒑(𝑣) ∈ R3, (1−dimensional) edges 𝐸, (2−dimensional) faces
𝐹 , and (3−dimensional) cells 𝐶 , collectively referred to as entities.
In contrast to surface meshes, volumetric meshes also represent

the interior. For simplicity,M refers to the mesh itself or the set
𝑉 ∪ 𝐸 ∪ 𝐹 ∪𝐶 of its entities. We write 𝜎 < 𝜌 if the dimensionality
of 𝜎 ∈ M is less than that of 𝜌 ∈ M.
An entity 𝜎 is incident to an entity 𝜌 of higher dimensionality if
it is entirely part of the boundary of 𝜌 and the two entities 𝜎 and
𝜌 are adjacent if they have the same dimensionality and share a
common entity of one lower dimensionality on their boundary. We
write both relations as 𝜎 ∼ 𝜌 . As a small abuse of this definition, we
consider a cell incident to itself.
We only consider manifold meshes whose incidence relations are
conforming and that do not contain any isolated entities.
The cell valence val𝑐 (𝑒) ∈ N≥1 of an edge 𝑒 ∈ 𝐸 is the number of its
incident cells. Analogously, val𝑓 (𝑒) ∈ N≥2 is the number of faces
incident to an edge. They only differ for boundary edges where
val𝑓 (𝑒) = val𝑐 (𝑒) + 1.

A tetrahedral mesh or tet-mesh T = (𝑉T , 𝐸T , 𝐹T ,𝐶T) is a simpli-
cial complex, meaning each cell 𝑐 ∈ 𝐶T is a tetrahedron consisting
of four triangular faces.
In a hexahedral mesh or hex-meshH = (𝑉H, 𝐸H, 𝐹H,𝐶H), each

cell 𝑐 ∈ 𝐶H is a hexahedron consisting of six quadrilateral faces,
and a singular edge is defined as any inner edge or boundary edge
with cell valence other than four or two, respectively. Otherwise,
the edge is called regular.
Our algorithm relies on OpenVolumeMesh (OVM) [Kremer et al.

2013] as a data structure for meshes which extends the ideas of
OpenMesh [Botsch et al. 2002] to the third dimension. Each edge is
split into two directed edges [Campagna et al. 1998], and each face
is split into two half-faces, each with an incident cell if it is not on
the boundary of the mesh. Conventionally, the four vertices of a
tet are positively oriented, and the vertices of its four half-faces are
oriented such that the tet volume is the intersection of the respective
defined half-spaces.

3.2 Integer-Grid Map
The idea of parametrization based hexahedral meshing is to map a
tetrahedral mesh onto the regular cartesian grid such that the preim-
age of the intersection of the integer grid with the parametrized
tet-mesh defines a boundary-aligned, conforming hexahedral mesh.
The task of computing this preimage is trivial for globally injective
parametrizations where topologically adjacent tets remain geomet-
rically adjacent. However, such a mapping would not allow singular-
ities and consequently hurt mesh quality. To support singularities,
an integer-grid map allows for non-identity transitions between
adjacent tets, leading to gaps (for valences less than four) or over-
laps (for valences greater than four) in the case of inner edges. This
makes extracting the mesh connectivity nontrivial as it requires
a careful tracing through the parametrization while regarding the
transitions as explained in Sections 5.3 and 5.4.
A 3d integer-grid map (IGM) is the union of per-cell affine map-

pings 𝒇 = {𝒇𝑐 : R3 → R3}𝑐∈𝐶T that map the four vertex positions
of each tet 𝑐 ∈ 𝐶T to four respective parameters. The preimage of
the intersection of the parametrization with the regular cartesian
grid induces the hex-mesh as visualized in Figure 2. A position can
be mapped to different parameters in different cell charts which are
related by the transition functions 𝜏𝑖 𝑗 that map the chart of a tet 𝑐𝑖 to

4 • Kohler et al.

Fig. 2. A tet-mesh is mapped onto the regular integer-grid, which implies
the hex-mesh structure by the map’s preimage. To allow for a resulting
singular hex-edge of valence 3 in the center, the mesh is cut open around it
resulting in non-identity transitions (red) between adjacent cells.

the chart of an adjacent tet 𝑐 𝑗 , meaning 𝜏𝑖 𝑗 (𝒇𝑐𝑖 (𝑝)) = 𝒇𝑐 𝑗 (𝑝) for any
point 𝑝 shared by both parametrized tets. If not specified, 𝒇 is the
per-cell mapping of an arbitrary cell incident to the parametrized
simplex and we write 𝒇 (𝑣) instead of 𝒇 (𝒑(𝑣)) and 𝒇 (𝜎) instead of
(𝒇 (𝑣1), ...,𝒇 (𝑣𝑑)) for the𝑑 vertices of 𝜎 . In the context of integer-grid
maps, a singular edge is either an inner or boundary tet-edge where
the sum of parametric dihedral face angles around it is different
than 2𝜋 or 𝜋 respectively, and a singular vertex is a vertex incident
to other than zero or two singular edges [Lyon et al. 2016].

As explained in [Brückler et al. 2022; Liu et al. 2018; Lyon et al.
2016], an IGM satisfies the following four constraints.
(IGM1) Conformity The transition functions are automorphisms of

the form 𝜏𝑖 𝑗 (𝑢) = 𝑅𝑖 𝑗 (𝑢) + 𝑡𝑖 𝑗 where 𝑡𝑖 𝑗 ∈ Z3 is an integer
translation and 𝑅𝑖 𝑗 ∈ 𝑂 is one of the 24 octahedral rotations
that preserves orientations. Since 𝜏 𝑗𝑖 = 𝜏−1

𝑖 𝑗 it follows that
𝑅 𝑗𝑖 = 𝑅−1

𝑖 𝑗 and 𝑡 𝑗𝑖 = 𝑅 𝑗𝑖 (−𝑡𝑖 𝑗).
(IGM2) Boundary integer alignment For all boundary faces 𝑓 ∈ 𝜕𝐹

there exist 𝑧 ∈ Z, 𝑎, 𝑏, 𝑐 ∈ R2, 𝑅 ∈ 𝑂 such that
𝒇 (𝑓) = (𝑅(𝑧, 𝑎), 𝑅(𝑧, 𝑏), 𝑅(𝑧, 𝑐)).

(IGM3) Singularity integer alignment For all singular edges 𝑒 there
exist 𝑧 ∈ Z2, 𝑎, 𝑏 ∈ R, 𝑅 ∈ 𝑂 such that
𝒇 (𝑒) = (𝑅(𝑧, 𝑎), 𝑅(𝑧, 𝑏)) and
𝒇 (𝑣) ∈ Z3 for all singular vertices 𝑣 .

(IGM4) Local injectivity The per-cell mappings have consistent, posi-
tive orientation, meaning ori3D(𝒇 (𝑐)) > 0 for all tets 𝑐 ∈ 𝐶T
where
ori3D(𝐴, 𝐵,𝐶, 𝐷) = sgn(det([𝐴 − 𝐷 | 𝐵 − 𝐷 | 𝐶 − 𝐷]))
describes the side on which one point lies compared to the
half-space defined by the other three.

An IGM satisfying the first three constraints only approximately,
due to the numerical tolerance of the solver that generated it, and
not necessarily satisfying the local injectivity constraint is referred
to as a relaxed integer-grid map by [Lyon et al. 2016] and serves
as the parametrization in HexEx. The omission of (IGM4) allows
for flipped (ori3D < 0) or degenerate (ori3D = 0) tets, causing
numerous hurdles like multiple hex-vertices being extracted at the
same parameter and flipped regions in the parametrization that
need to be fixed in a dart annihilation postprocessing step by [Lyon
et al. 2016].
Based on the achievements by [Liu and Bommes 2023], Hex2 expects
(IGM4) to always be satisfied. We refer to such an IGM as a locally

injective relaxed integer-grid map, as the first three constraints might
still only be satisfied approximately.

4 Data Structures
We introduce the dart data structure used in HexEx and the new
propeller data structure used in Hex2.

4.1 The Darts of HexEx

Fig. 3. A dart (𝑣, 𝑒, 𝑓 , 𝑐) consists of a vertex (red), edge (blue), face (green)
and cell (yellow) that are pairwise incident. It is connected to the four unique
darts that each share but one entity.

HexEx defines the extracted hex mesh using the dart data struc-
ture [Kraemer et al. 2014]. A dart is a 4−tuple (𝑣, 𝑒, 𝑓 , 𝑐) ∈ 𝑉×𝐸×𝐹×𝐶
whose entities are pairwise incident. Each dart stores four connec-
tions to other darts, 𝛼0 to 𝛼3, where 𝛼𝑖 (𝑑) refers to the unique dart
which shares all the entities with 𝑑 except the 𝑖−dimensional entity.
For example, 𝛼0 ((𝑣, 𝑒, 𝑓 , 𝑐)) = (𝑣 ′, 𝑒, 𝑓 , 𝑐) is the dart consisting of the
same edge, face, and cell, but different vertex. For boundary faces,
𝛼3 is ignored. As each hex consists of six faces, each face of four
edges and each edge of two vertices, there are 6 · 4 · 2 = 48 darts per
hex and 48|𝐶H | darts with 4 · 48 = 192|𝐶H | connections stored in
total.

4.2 The Propellers of HexHex
Intuitively, a propeller is half of an edge. A pair of a propeller and
one of its blades are a quarter of a hex-face or quad-corner. A triple
of a propeller and two consecutive blades is an eighth of a hex-cell
or hex-corner.
More formally, for a meshM = (𝑉 , 𝐸, 𝐹,𝐶), we define the set of

2|𝐸 | propellers as the directed edges

P = {𝑝𝑣,𝑒 = (𝑣, 𝑒) ∈ 𝑉 × 𝐸 : 𝑣 ∼ 𝑒}

where each propeller stores 1 + val𝑓 (𝑒) connections to other pro-
pellers. Each propeller stores one connection to its opposite

opposite(𝑝𝑣,𝑒) = 𝑝𝑣′,𝑒 ∈ P s.t. 𝑣 ≠ 𝑣 ′

which is the propeller corresponding to the same edge but different
vertex. Additionally, let 𝑓 0

𝑣,𝑒 , 𝑓
1
𝑣,𝑒 , ..., 𝑓

val𝑓 (𝑒)−1
𝑣,𝑒 be the faces ordered

around a directed edge such that 𝑓 𝑖𝑣,𝑒 and 𝑓 𝑖+1
𝑣,𝑒 are incident to a

common cell. Then, the 𝑖-th blade, blade𝑖 (𝑝𝑣,𝑒), of a propeller 𝑝𝑣,𝑒
is the propeller on the same vertex but different edge such that the
two edges are incident to the shared face 𝑓 𝑖𝑣,𝑒 .

blade𝑖 (𝑝𝑣,𝑒) = 𝑝𝑣,𝑒𝑖𝑣
∈ P s.t. 𝑒 ≠ 𝑒𝑖𝑣 ∧ 𝑒𝑖𝑣 ∼ 𝑓 𝑖𝑣,𝑒

HexHex • 5

Fig. 4. A propeller (red) on a vertex 𝑣 is connected to its opposite (pink) on
a common (valence 4) edge 𝑒 but different vertex 𝑣′. Its 𝑖−th blade (blue)
encloses a shared face 𝑓 𝑖𝑣,𝑒 with the corresponding opposing blade (green).
𝑓 𝑖−1
𝑣,𝑒 and 𝑓 𝑖𝑣,𝑒 are incident to a common hex-cell (gray, dashed).

For each edge, a unique connection offset 𝑙𝑒 ∈ {0, ..., val𝑓 (𝑒) − 1} is
defined such that

𝑓 𝑖𝑣,𝑒 = 𝑓
(𝑙𝑒−𝑖)
𝑣′,𝑒

This offset exists if we enforce the ordering of blades to always
be counterclockwise (or to always be clockwise) around a propeller.
The last and first faces are incident to a common cell only if the edge
does not lie on the boundary or if val𝑓 (𝑒) = 2. The 𝑖-th opposite blade
of a propeller 𝑝𝑣,𝑒 is the blade of its opposite that encloses a shared
face with its 𝑖−th blade and is implicitly given by the opposite and
blade connections as follows:

oppositeblade𝑖 (𝑝𝑣,𝑒) = blade(𝑙𝑒−𝑖) (opposite(𝑝𝑣,𝑒))

All indices are to be interpreted as cyclic modulo the face valence
or number of blades.

4.3 Properties
A propeller corresponding to a half-edge (𝑣, 𝑒) essentially combines
2 · val𝑐 (𝑒) darts into a single object and corresponds to the orbit
⟨𝛼2, 𝛼3⟩(𝑑) [Kraemer et al. 2014] of a dart 𝑑 = (𝑣, 𝑒, ·, ·), meaning it
combines all darts reachable via 𝛼2 (different face) or 𝛼3 (different
cell) connections.
To describe a hexahedral mesh, we need 2|𝐸H | propellers, and

there are 2
∑

𝑒 val𝑓 (𝑒) + 1 = 8|𝐹H | + 2|𝐸H | interconnections since
each quad face consists of four edges. Consider an infinite regular
hexahedral mesh where each hex-vertex is an inner vertex with 8
incident cells. Since there are 3 incident faces per incident cell, and
2 incident edges per incident face, a hex-vertex has 8 · 3 · 2 = 48
incident darts. It has 6 incident edges, resulting in only 6 incident
propellers per hex-vertex. Furthermore, per hex-vertex, there are
4·48 = 192 dart connections and 6· (4+1) = 30 propeller connections.
Consequently, the usage of propellers requires 48

6 = 8 times less
objects and 192

30 = 6.4 less connections compared to darts. This
highlights the primary advantage of this data structure for our
application, although in a finite mesh with the presence of boundary
vertices, these factors are slightly lower.

Whereas darts can directly describe nonmanifold meshes, this
is not the case for propellers but could be remedied by storing
whether or not two consecutive blades are incident to a shared cell.
Furthermore, although we use propellers to describe a hexahedral
mesh only, they could also be applied to other polyhedral meshes.
These observations are summarized in Table 2.

In both the dart and the propeller data structures, only the vertices
are stored explicitly, whereas the other entities are stored implicitly
via a collection of darts or propellers per vertex.

Table 2. Comparison of the dart data structure and the propeller data
structure defining a hex-mesh in terms of some basic properties. The factors
to compare the two different units of measurements (cells for darts and
edges, faces for propellers) consider an infinite regular grid.

Property Darts Propellers Darts
Propellers

Nonmanifolds ✓ ✓
Polyhedral meshes ✓ ✓
#Objects (hex) 48|𝐶H | 2|𝐸H | 8

#Connections (hex) 192|𝐶H | 8|𝐹H | + 2|𝐸H | 6.4

5 Algorithm
We now explain the individual steps of the Hex2 pipeline in more
detail. In Section 5.1, we explain how and why the input has to
be preprocessed. In Section 5.2, Section 5.3, and Section 5.4, we go
over the extraction process consisting of a vertex extraction for
which we developed a conservative rasterization algorithm based
on standard techniques, and a connectivity extraction for which we
use the propellers. For both, we highlight how it improves upon
HexEx in terms of performance. Lastly, in Section 5.5, we present
the optional extraction of piecewise-linear elements.

The input for our algorithm is a tetrahedral mesh
T = (𝑉T , 𝐸T , 𝐹T ,𝐶T) and a locally injective relaxed integer grid
map 𝒇 = {𝒇𝑐 }𝑐∈𝐶T , and the output is the induced hexahedral mesh
H = (𝑉H, 𝐸H, 𝐹H,𝐶H). For clarity, some illustrations are in 2𝑑 .

To clarify the differences and improvements from HexEx to Hex2,
we will, for each subtask, give a brief explanation on how it is
executed in HexEx and why there are possible improvements, before
explaining our version in more detail.

5.1 Preprocessing
The preprocessing phase consists of caching some frequently used
properties as well as a sanitization of the integer-grid map that is
necessary because it fulfills (IGM1) to (IGM3) only approximately
due to the solver’s numerical tolerance. This phase remains mostly
the same compared to HexEx, apart from utilizing multiple threads
for each substep and a more efficient parameter propagation if
no nontrivial transitions are present around a vertex. Normally,
previous steps of the state-of-the-art hex-meshing pipeline already
compute the edge valences and rotations. In that case, the values
are not recalculated by Hex2.

5.1.1 Extracting the Transition Functions. The parametrization is
provided solely as parametric position per tet corner, thus requiring

6 • Kohler et al.

a computation of the transition functions. Given the vertex parame-
ters𝑢𝑖1, 𝑢𝑖2, 𝑢𝑖3 and𝑢 𝑗1, 𝑢 𝑗2, 𝑢 𝑗3 of a face in the charts of two adjacent
tets 𝑐𝑖 , 𝑐 𝑗 ∈ 𝐶T , the transition 𝜏𝑖 𝑗 from 𝑐𝑖 to 𝑐 𝑗 is implicitly provided
as

𝑅𝑖 𝑗 = argmin𝑅∈𝑂 (∥𝑢′𝑗2 − 𝑅(𝑢′𝑖2)∥2 + ∥𝑢′𝑗3 − 𝑅(𝑢′𝑖3)∥2)
𝑡𝑖 𝑗 = round(𝑢 𝑗1 − 𝑅𝑖 𝑗 (𝑢𝑖1))

where 𝑢′
𝑘𝑙

= 𝑢𝑘𝑙 − 𝑢𝑘1 shift the first vertex parameters to the origin.
In most cases (around 90% on average), the vertex parameters are
the same in both charts making this computation unnecessary and
𝜏𝑖 𝑗 is set to the identity.

5.1.2 Computing Singularities. As defined in Section 3.2, singulari-
ties in the IGM are defined by the sum of parametric dihedral face
angles around an edge. Computing this sum 𝛼𝑒 ∈ R for each edge
𝑒 ∈ 𝐸T is straightforward, and the edge is deemed singular if a
hex-edge extracted on it would be singular.

singular(𝑒) :=
{
round(2𝛼𝑒

𝜋
) ≠ 4, 𝑒 is inner

round(2𝛼𝑒
𝜋
) ≠ 2, 𝑒 is boundary

5.1.3 Sanitization. If the input is not already an exact IGM, it is still
possible that transforming a parameter from one chart to an adjacent
one does not result in the correct parameter, i.e., 𝜏𝑖 𝑗 (𝑢𝑖) ≠ 𝑢 𝑗 . To
remedy this, the strategy of [Ebke et al. 2013] is applied in which
the vertex parameter in the chart of an incident cell is truncated
according to the maximum coordinate of a vertex parameter over
all incident cell charts and then propagated to all incident charts
according to the respective transition functions. This propagation
is optimized in Hex2 as follows: When a vertex does not have any
incident nonidentity transitions, its parameter is set directly in
all incident tet charts instead of wandering between incident tets
and applying an accumulated transition function. To ensure the
exact fulfillment of (IGM2) and (IGM3), singular vertices, edges, and
boundary faces are snapped to the nearest integer point, -line and
-plane respectively. After the exact fulfillment of (IGM1) to (IGM4) is
guaranteed, to make the algorithm robust against the inaccuracies of
floating point arithmetic, we employ exact predicates as provided by
[Richard Shewchuk 1997] for all the various geometric tests required
in the following phases of the algorithm. Specifically, all tests build
on the implementation of ori3D that determines the orientation of
four 3𝑑 points (cf. (IGM4)).

5.2 Vertex Extraction
An integer point 𝑧 ∈ Z3 intersecting a parametrized tet-element
𝜎 ∈ T implies a hex-vertex 𝑣 ∈ 𝑉H . This simplex is referred to as
the generator of the hex-vertex by [Lyon et al. 2016]. For the later
local connectivity extraction presented in Section 5.3, it is crucial
that we know the generator per hex-vertex as it reduces the num-
ber of possible cases to consider. A generator of a hex-vertex can
be a tetrahedral vertex, edge, face or cell as visualized in Figure 5.
We first present how the vertices are extracted in HexEx, and how
we use the principles of rasterization and a Generator function to
reduce the number of exact predicate checks and, consequently, the
runtime of the geometry extraction step.

FC

E
F

EV
E
V

EF

E

V

Fig. 5. A single parametrized tet cell which intersects 12 integer points on
either its vertices (V, red), edges (E, blue), faces (F, green), or in its interior
(C, yellow), corresponding to 12 hex-vertices. The generator of a hex-vertex
is the simplex of the tet mesh whose parametric interior the corresponding
integer-grid point intersects. There are three vertex generators, three edge
generators (two of which both contain two points), three face generators,
and one cell generator.

HexEx: To prevent duplicate hex-vertices from being extracted due
to intersecting multiple tet images on their boundaries, HexEx iter-
ates over all vertices, edges, faces, and cells separately and excludes
their respective boundaries. Let us formally define the parametric
volume of a simplex 𝜎 ∈ T as the convex hull of its vertex parame-
ters

𝐹𝑐 (𝜎) = Conv(𝒇𝑐 (𝜎))
and its parametric interior as the parametric volume without its
boundary

𝐹𝑐 (𝜎) = 𝐹𝑐 (𝜎) \
⋃
𝜌<𝜎
𝜌∼𝜎

𝐹𝑐 (𝜌)

Algorithm 1 HexEx: Vertex Extraction
1: for 𝜎 ∈ 𝑉T ∪ 𝐸T ∪ 𝐹T ∪𝐶T do
2: 𝑐 ← any 𝑐 ∈ 𝐶T s.t. 𝜎 ∼ 𝑐
3: if 𝜎 ∈ 𝐸T then
4: for 𝑧 ∈ 𝐹𝑐 (𝜎) ∩ Z3 do
5: extract hex-vertex with edge generator 𝜎 and position 𝒇 −1

𝑐 (𝑧) .
6: if 𝜎 ∈ 𝑉T ∪ 𝐹T ∪𝐶T then
7: for 𝑧 ∈ AABB(𝐹𝑐 (𝜎)) ∩ Z3 do
8: if 𝑧 ∈ 𝐹𝑐 (𝜎) then
9: extract hex-vertex with generator 𝜎 and position 𝒇 −1

𝑐 (𝑧) .

For each simplex 𝜎 ∈ T and each parameter 𝑧 ∈ 𝐹 (𝜎) ∩Z3, a hex-
vertex with generator 𝜎 is extracted at position𝒇 −1 (𝑧). This position
is not unique if the cell chart is degenerate. For faces and cells,
HexEx tests every integer-grid point in the axis-aligned bounding
box (AABB) of the parametrized simplex, resulting in a large number
of unnecessary exact predicate checks.

For example, consider a triangle with a nor-
mal direction far from any coordinate axis. Its
bounding box will be significantly larger than
the triangle, meaning a lot of points are tested
even though a “randomly positioned” triangle in 3𝑑 space will very
rarely intersect any integer point. Such an example is shown in the
inset figure where a triangle does not intersect any of the integer
locations within its bounding box. Even a tet with three integer-
aligned faces only fills one-sixth of its bounding box. Additionally,
since faces are tested independently of cells, HexEx uses a special

HexHex • 7

Fig. 6. In Hex2, a tetrahedron in 3𝑑 is rasterized by sweeping along one
axis. The resulting intersections with an integer-grid plane are 2𝑑 polygons.
These are rasterized analogously resulting in 1𝑑 intervals on which the
enumeration of integers is trivial.

exact predicate function, requiring up to 7 orientation checks per
face and integer point. A cell always requires 4 orientation checks
per point, one w.r.t. each half-face, an edge requires up to 3, and
a vertex requires none since one only needs to check if the vertex
parameter is an integer. The algorithm is shown in Algorithm 1.
Note that the axis-aligned bounding box of a single vertex is just
the point itself. For edges, one coordinate axis is chosen in which
the 1𝑑 integers are linearly interpolated to the 3𝑑 line, rounded to
the nearest integer-grid point, and tested against the line with a
specific exact predicate.

Hex2:We reduce the set of candidate integer-grid points through
a conservative rasterization approach, which iterates in parallel
over only the tetrahedra. Each vertex, edge, face and cell 𝜎 ∈
𝑉T ∪ 𝐸T ∪ 𝐹T ∪ 𝐶T is assigned to an arbitrary incident tet de-
noted by ParentTet(𝜎) ∈ 𝐶T during the preprocessing phase to
prevent duplicate hex-vertices from being extracted. Due to the local
injectivity, there is no ambiguity when mapping back an integer
parameter to the mesh domain. The high-level algorithm is shown
in Algorithm 2.
For numerical robustness, we increase the candidate set of integer-
grid points by enlarging our tets by some global tolerance 𝜀 ≥ 0
as visualized in Figure 7 in 2𝑑 . A candidate point is then checked
using an exact predicate. In the following, we explain the algorithm
in more detail.
Algorithm 2 HexHex: Vertex Extraction
1: parallel for 𝑐 ∈ 𝐶T do
2: if AABB(𝐹𝑐 (𝑐)) ∩ Z3 ≠ ∅ then
3: for 𝑧 ∈ 𝐹𝑐 (𝑐) ∩ Z3 do //conservative rasterization
4: if (𝜎 ← Generator(𝑧, 𝑐)) ≠ ⊥ and ParentTet(𝜎) = 𝑐 then
5: extract hex-vertex 𝑣 with generator𝜎 , parameter 𝒇 𝑐 (𝑣) = 𝑧, and position 𝒇 −1

𝑐 (𝑧) .
6:

5.2.1 Rasterization. In our context, rasterization refers to efficiently
enumerating all integer points that intersect a tetrahedron, as con-
ceptually visualized in Figure 6. For each tet 𝑐 ∈ 𝐶T , we first check
if the axis-aligned bounding box of its parametric volume contains
any integer-grid point. If there is at least one such candidate point,
the axis of sweeping is chosen such that the number of scanplanes is
minimized, meaning it is equal to the coordinate in which the extent
of the integer bounding box of the tet image is minimal. Without loss
of generality, we assume this to be the 𝑧−axis and the four points

𝐴, 𝐵,𝐶, 𝐷 ∈ R3 of the tet to be sorted in descending order such that
𝐴𝑧 ≤ 𝐵𝑧 ≤ 𝐶𝑧 ≤ 𝐷𝑧 . The level of sweeping starts at 𝑧 = ⌈𝐴𝑧⌉ and is
increased by one after each step until 𝑧 = ⌊𝐷𝑧⌋. At every level, the
points of the intersection polygon are computed. The intersection
of the integer-grid plane with constant 𝑧−coordinate 𝑧 ∈ Z with the
tetrahedron is a (convex) quadrilateral if 𝐵𝑧 < 𝑧 < 𝐶𝑧 and a triangle
otherwise, except if the tet does only touch the plane with one or
two of its vertices. This polygon is rasterized analogously along the
𝑦−axis where at each level 𝑦 ∈ Z, the intersection of an integer-grid
line and the polygon is a line segment from (𝑥𝑙 , 𝑦, 𝑧) to (𝑥𝑟 , 𝑦, 𝑧).
Due to the convexity of a tetrahedron, the points in between are
also contained in the tet and do not need to be tested.

5.2.2 Conservative Rasterization. The geo-
metric computations of the rasterization
as explained above are inexact due to the
limited precision of floating point opera-
tions. These numerical errors can lead to
missing candidate integer points (see inset
figure). Simply padding the intersection
line segments by a nonnegative value is
not enough as entire scanlines might be
missing when an integer-grid point lies within a tet, but below or
above the computed intersection polygon (cf. upper red vertex in
inset figure).

µp µq

v1

v2

v3

(a) The intersection of an integer-
aligned plane with a tet.

ε

µp µq

v1

v2

v3

εp εq

(b) The tet is enlarged to the convex
hull of the 𝜀−balls around its ver-
tices.

ε
ε

µp µq

v1

v2

v3

εp εq

(c) 𝜀−boxes are considered as a
simple, conservative approximation.
Consequently, the intersection poly-
gon 𝑝,𝑞 is enlarged by 𝜖𝑝 , 𝜖𝑞 ≥ 0.

ε
ε

µp µq

v1

v2

v3

εp εq

(d) The candidate set is clamped to
the integer bounding box of the tet.

Fig. 7. For robustness and performance, the tetrahedron is conservatively
enlarged by some 𝜀 ≥ 0. For clarity, the tet is visualized in 2𝑑 given by
vertices 𝑣1, 𝑣2, 𝑣3.

To remedy this, we conceptually enlarge a tetrahedron (Figure 7a)
such that the distance between the faces of the tet and the faces of the
inflated tet is equal to a global tolerance 𝜀 ≥ 0. This corresponds to
the convex hull of the 𝜀−balls around the tet-vertices (Figure 7b). As
a conservative approximation of this inflated tet, and in particular to
avoid square root computations, we instead consider the convex hull
of the 𝜀−cubes (Figure 7c). The rasterized region is clamped to the

8 • Kohler et al.

ε
ε ∆x

∆z
ε

ε ·∆x/∆zε

µ

A

B

Fig. 8. The 𝜖 corresponding to the distance, in 𝑥 , of the intersection point
𝜇 on the tet-edge to the intersection point on the enlarged tet’s edge is
computed using similar triangles.

integer bounding box of the tet (Figure 7d) to prevent superfluous
predicate tests.

If the intersection point of an integer plane 𝑧 ∈ Z with a tetrahe-
dron lies in the parametric interior of a tet-edge 𝐴, 𝐵 ∈ R3, meaning
w.l.o.g. 𝐴𝑧 < 𝑧 < 𝐵𝑧 , it is computed as an 𝜖−rectangle 𝑝 = (𝜇𝑝 , 𝜖𝑝)
given by a center

𝜇
𝑝
𝑥𝑦 = 𝐴𝑥𝑦 +

𝑧 −𝐴𝑧

𝐵𝑧 −𝐴𝑧

·
(
𝐵𝑥𝑦 −𝐴𝑥𝑦

)
and half size

𝜖
𝑝
𝑥𝑦 = 𝜀 + 𝜀 ·

|𝐵𝑥𝑦 −𝐴𝑥𝑦 |
𝐵𝑧 −𝐴𝑧

as visualized in Figure 8 in 2𝑑 for clarity. The intersection point of
the conservatively enlarged tet’s edge with the integer plane then
corresponds to one of the four extreme points of the 𝜖−rectangle
𝑝 . In the case where an intersection point corresponds exactly to a
tet-vertex 𝐴 ∈ R2 × {𝑧} and does not lie in the parametric interior
of a tet-edge, we instead set (𝜇𝑥𝑦, 𝜖𝑥𝑦) = (𝐴𝑥𝑦, (0, 0)).

µp

µq

µr

µs

xl xr

εpyεpx

ε

a

b

Fig. 9. The computed intersection polygon of a plane with a tet is given
by its 𝜖−rectangles 𝑝,𝑞, 𝑟, 𝑠 . This inflated polygon, enlarged again by the
global tolerance 𝜀 , is rasterized analogously to the tetrahedron.

To compute the intersection interval of an 𝜖−polygon given by
three or four 𝜖−rectangles, as visualized in Figure 9, with an integer-
grid line 𝑦 ∈ Z, the individual intersections of the line with each
polygon’s edge 𝐸 = (𝑝, 𝑞) are computed. There are three cases:

(1) 𝐸 does not intersect the line. Then, the intersected range is
empty.

(2) The 𝑦−ranges of the 𝜖−rectangles 𝑝, 𝑞 overlap, meaning the
edge is close to parallel to the 𝑥−axis. Then, we set

𝑥𝐸
𝑙
= min(𝜇𝑝𝑥 − 𝜖

𝑝
𝑥 , 𝜇

𝑞
𝑥 − 𝜖

𝑞
𝑥)

𝑥𝐸𝑟 = max(𝜇𝑝𝑥 + 𝜖
𝑝
𝑥 , 𝜇

𝑞
𝑥 + 𝜖

𝑞
𝑥)

(3) Otherwise, the intersection is computed analogously to the
tet-case. Let𝑎, 𝑏 ∈ R2 be two extreme points of the segment’s
convex hull (w.l.o.g. 𝑎𝑦 < 𝑏𝑦). Then we compute

𝑥𝐸
𝑙𝑟
=

(
𝑎𝑥 +

[
𝑦 − 𝑎𝑦
𝑏𝑦 − 𝑎𝑦

]
0,1
· (𝑏𝑥 − 𝑎𝑥)

)
∓

(
𝜀 + 𝜀 · |𝑏𝑥 − 𝑎𝑥 |

𝑏𝑦 − 𝑎𝑦

)
where [·]0,1 means clamping a value between 0 and 1.

The entire intersection interval of an 𝜖−polygon with the integer-
grid line corresponds to the maximum range of intersection points
over the relevant set of edges.

(𝑥𝑙 , 𝑥𝑟) = (min
𝐸

𝑥𝐸
𝑙
,max

𝐸
𝑥𝐸𝑟)

Since this conservative approach entails that we generally enu-
merate more points than are contained in the tet, we subsequently
verify with exact predicates whether or not a candidate integer point
lies within the tetrahedron. To that end, a parameter 𝑧 ∈ Z3 in the
chart of tet 𝑐 ∈ 𝐶T is checked using the function

Generator : Z3 ×𝐶T → T ∪ {⊥}, (𝑧, 𝑐) ↦→ 𝜎

which returns the unique generator simplex 𝜎 ∈ T ∪{⊥} incident to
𝑐 such that the parameter 𝑧 is integer and contained in the parametric
interior of 𝜎 , meaning 𝑧 ∈ 𝐹𝑐 (𝜎)∩Z3, or⊥ if the parameter is outside
the image of the tet.
Since a tetrahedron corresponds to the intersection of four half-
spaces given by its four triangular half-faces, the four respective
orientation tests of 𝑧 against each half-space already provide the
generator simplex, as described in more detail in Section A.1, which
eliminates the need for checking vertices, edges and faces separately.
The number of exact predicate checks can be further reduced by
exploiting convexity of the tetrahedron, i.e., after identifying the
leftmost and rightmost interior integer points of a scanline, all
integer points in-between are guaranteed to be interior as well.

5.2.3 Choice of Epsilon. By default we choose 𝜀 = 10−6, which is
empirically motivated by the evaluation presented in Section 6.2.1.
On the one hand, we did not observe any failure cases for 𝜀 > 10−17,
while on the other hand the runtime overhead for 𝜀 < 10−2 is neg-
ligible. Hence, 𝜀 = 10−6 offers sufficient numerical margin in both
directions to avoid undesired practical behavior. Importantly, for
increasing 𝜀 we never generate candidate points outside of the in-
teger bounding box of a tetrahedron such that in the limit case of
𝜀 = ∞ there is an effective fallback to the candidate set of HexEx,
which is guaranteed to be correct. Note that the practically un-
likely case of an insufficiently large 𝜀 can always be detected in
the subsequent connectivity extraction and is easily resolved by
re-running the vertex extraction with 𝜀 =∞. While such fallback to
𝜀 =∞ was never necessary in all our experiments, it is nevertheless
crucial to guarantee robustness without requiring assumptions on 𝜀.

The result of our geometry extraction is a list G of generators and a

HexHex • 9

list𝑉H (𝑔) of hex-vertices per generator. Each hex-vertex 𝑣 has a po-
sition 𝒑(𝑣) ∈ R3 in the mesh domain and one parameter 𝒇𝑐 (𝑣) ∈ Z3

in the co-domain for each tet 𝑐 incident to its generator.

5.3 Local Connectivity Extraction
The extracted hex-vertices define the (linear) hex-mesh’s geometry,
but we are still missing any information about the mesh’s connec-
tivity, the hex-edges, -faces and -cells. We split the connectivity
extraction into two parts. The local connectivity refers to the lo-
cal structure of outgoing incident hex-elements in a neighborhood
around each hex-vertex. The global connectivity (Section 5.4) then
refers to the interconnections between vertices.

HexEx: In HexEx, the local connectivity is expressed via darts (Sec-
tion 4.1) which are enumerated on each hex-vertex. We define an
integer-grid edge (unit length line segment), -face (unit square) and
-cell (unit cube), respectively originating from a parameter 𝑧 ∈ Z3

and extending in orthonormal axis aligned directions 𝑑1, 𝑑2, 𝑑3 as

E𝑑1 (𝑧) = {𝑧 + 𝑡1𝑑1 : 0 < 𝑡1 < 1}
F𝑑1,𝑑2 (𝑧) = {𝑧 + 𝑡1𝑑1 + 𝑡2𝑑2 : 0 < 𝑡1, 𝑡2 < 1}
C𝑑1,𝑑2,𝑑3 (𝑧) = {𝑧 + 𝑡1𝑑1 + 𝑡2𝑑2 + 𝑡3𝑑3 : 0 < 𝑡1, 𝑡2, 𝑡3 < 1}

For any hex-vertex 𝑣 ∈ 𝑉H with generator 𝑔 ∈ T and parameter
𝑧 ∈ Z3 in the chart of tet 𝑐 ∈ 𝐶T incident to 𝑔, an outgoing hex-edge
is implied if

𝐹𝑐 (𝑐) ∩ E𝑑1 (𝑧) ≠ ∅ (IGE)
an outgoing hex-face is implied if

𝐹𝑐 (𝑐) ∩ F𝑑1,𝑑2 (𝑧) ≠ ∅ (IGF)

and an outgoing hex-cell is implied if

𝐹𝑐 (𝑐) ∩ C𝑑1,𝑑2,𝑑3 (𝑧) ≠ ∅ (IGC)

For each hex-vertex 𝑣 ∈ 𝑉H , each tet 𝑐 ∈ 𝐶T incident to its genera-
tor 𝑔 and each triple of orthonormal axis aligned directions 𝑑1, 𝑑2, 𝑑3,
a dart, corresponding to a tuple (𝑣, 𝑒, 𝑓 , 𝑐) ∈ 𝑉H × 𝐸H × 𝐹H ×𝐶H
of incident hex-entities is extracted if the three aforementioned
conditions, IGE, IGF and IGC, are satisfied.

Hex2: Our approach for the local connectivity extraction uses the
propeller data structure as defined in Section 4.2. We notice that it
suffices to explicitly extract the local connectivity on a small subset
of hex-vertices only. This is due to two observations, illustrated in
Figure 10, and explained in the following, which we collectively
refer to as the constant local connectivity property.

5.3.1 Constant Local Connectivity Property. First, all hex-vertices
with a cell generator are locally identical. Every such vertex is an
inner vertex with six outgoing hex-edges, one per axis-aligned direc-
tion in the parametrization, and eight incident hex-cells surrounding
it. Similarly, all hex-vertices extracted on a boundary face generator
are locally identical up to an octahedral rotation due to (IGM2).
They will have five outgoing hex-edges and four incident hex-cells.
The two cases are visualized in Figure 10a. We consider the infor-
mation implicitly given and skip the local connectivity extraction
for these types. Since most inner hex-vertices are extracted strictly
inside cells and most boundary hex-vertices have boundary face

FC

(a) All cell generators are locally iden-
tical, having six propellers extending
into the cell (yellow). All boundary
face generators are locally identical,
having one propeller extending into
the cell (yellow) and four into the face
(green).

F

F

F

F

F

(b) All points on the same gen-
erator are locally identical.

Fig. 10. Illustration of the constant local connectivity property.

generators, skipping the local connectivity extraction for the two
types significantly reduces the number of hex-vertices that need to
be processed. Second, the local connectivity is the same for every
point on a generator, as shown in Figure 10b for a face generator.
For any fixed generator 𝑔 and direction 𝑑 , the integer-grid edge
E𝑑 (𝑧) extends into the same incident simplex 𝜌 , no matter the ori-
gin 𝑧 ∈ 𝐹𝑐 (𝜎). This means it suffices to extract the local connectivity
once per generator instead of per hex-vertex, which makes this step
of the algorithm independent of the number of hex-elements per
tet-element.

The local connectivity extraction consists of three substeps: The
propeller extraction (Section 5.3.2) provides information about out-
going hex-edges, the blade enumeration (Section 5.3.3) identifies
the propeller pairs that span hex-faces and the corner enumeration
(Section 5.3.4) identifies the propeller triples that span hex-cells.

E

V E

F

V

V

V

F

Fig. 11. Different types of propellers based on their holder, the simplex into
which they extend. Within the parametrized tet are 4 propellers extending
into edges (blue), 12 into faces (green), and 4 into the cell (yellow).

5.3.2 Propeller Extraction. For each tet 𝑐 ∈ 𝐶T incident to the
generator 𝑔 of an arbitrary hex-vertex 𝑣 ∈ 𝑉H (𝑔), we test for each
of the six axis-aligned directions
𝑑1 ∈ D := {±(1, 0, 0)⊤,±(0, 1, 0)⊤,±(0, 0, 1)⊤} whether the integer-
line segment originating from the parameter 𝑧 = 𝒇𝑐 (𝑣) of the hex-
vertex in the chart of 𝑐 and going in direction 𝑑1 intersects the

10 • Kohler et al.

parametric volume of 𝑐 (Equation (IGE)) using a function

Holder : G × Z3 × D ×𝐶T → T ∪ {⊥}, (𝑔, 𝑧, 𝑑1, 𝑐) ↦→ 𝜌

which works similarly to the Generator function. Given a generator
𝑔, any parameter 𝑧 ∈ 𝐹𝑐 (𝑔), a direction 𝑑1 and a tet 𝑐 , the holder
function returns the unique simplex 𝜌 , incident to 𝑐 such that the
integer-grid edge E𝑑1 (𝑧) extends into the parametric interior 𝐹𝑐 (𝜌).
It returns ⊥ if the integer-grid edge only shares its origin with the
tet. The exact implementation is provided in Section A.2. If 𝜌 ≠ ⊥, a
local propeller with holder 𝜌 is extracted, representing |𝑉H (𝑔) | many
hex-half-edges, one per hex-vertex on the generator. The holder is
always an edge, face, or cell, and either the generator itself or an
incident simplex of higher dimensionality, meaning there are 10
combinations of generator- and holder types, some of which are
displayed in Figure 11. To avoid duplicates on a shared edge or face,
the propeller is ignored if the assigned tet of its holder does not
match the tet in which the propeller was discovered, analogously to
Section 5.2. For all tets 𝑐𝑘 incident to the holder 𝜌 of the propeller,
the direction of the propeller is stored as 𝑑𝑐𝑘 (𝑝) = 𝑅𝑐,𝑐𝑘 (𝑑1) where
𝜏𝑐,𝑐𝑘 is an accumulated transition 𝜏𝑐,𝑐𝑘 = 𝜏𝑐𝑘−1,𝑐𝑘 ◦ ... ◦ 𝜏𝑐,𝑐1 through
𝑘 tets from 𝑐 to 𝑐𝑘 around 𝜌 , such that 𝜌 ∼ 𝑐 𝑗 , 𝑐 ∼ 𝑐1 and 𝑐 𝑗 ∼ 𝑐 𝑗+1
for all 𝑗 .
Since every local propeller represents one half-edge per vertex,

the total number of hex-edges is given by

|𝐸H | =
1
2

∑︁
𝑔∈G
|𝑉H (𝑔) | · |P𝑙 (𝑔) |

where P𝑙 (𝑔) is the set of all local propellers on generator 𝑔.

5.3.3 Blade Enumeration. With the propellers extracted, we could
technically already trace along their directions through the
parametrization until the opposite hex-vertex is reached. However,
without information about the propeller blades and, in particular,
how the blades of two opposing propellers are related via the con-
nection offset, the result would not provide any knowledge about
the hex-faces or -cells. Therefore, before connecting the propellers
to their opposites, we first connect them to their blades. A blade of
a local propeller is another local propeller on the same generator
such that the two propellers enclose a common integer-grid face,
meaning they are perpendicular. In the easiest case, the blade has
an image in the same tet chart as the propeller. If this is not the
case, the task is made nontrivial by the presence of nonidentity
transitions, as the notion of orthogonality is somewhat ambiguous.
For example, it is possible that a propeller and its blade are collinear
when considering the images in the tets they were discovered in
as illustrated in Figure 12b. Even when acknowledging possible
transitions between tets, there are multiple ways to transition from
one tet to another. For example, we can rotate either clockwise or
counterclockwise around an edge. If we now consider an inner va-
lence three singular edge, like the one in Figure 2, one way, between
two tets between which the parametrization is cut open, leads to an
accumulated transition of some rotation while the other way leads
to the identity. Hence, we need a condition that determines through
which face we leave a tet to travel from a propeller to its blade. But
first, we need to know in what directions we need to look for the
blades.

V

(a) A casing of a propeller (red) to
one of its blades (blue) is the sim-
plex into which the integer-grid
face extends. To the left, the pro-
peller extends from its holder, an
edge, into the face (green), to the
right into the cell (yellow).

(b) The direction of a propeller
(red) on a valence 3 singular-
ity within the chart of cell 𝑐𝑖 is
collinear to the direction of its
blade (blue) in the chart of cell 𝑐𝑘
due to the nonidentity transition
𝜏𝑖 𝑗 .

Fig. 12

Starting from a local propeller 𝑝 ∈ P𝑙 (𝑔) on a generator 𝑔, we
first iterate over each tet 𝑐 incident to the holder ℎ of 𝑝 , in a coun-
terclockwise manner, and evaluate for each direction 𝑑2 orthogonal
to the direction 𝑑1 = 𝑑𝑐 (𝑝) of 𝑝 in the chart of 𝑐 the function

Casing : (𝐸T ∪ 𝐹T ∪𝐶T) × Z3 × D2 ×𝐶T → T ∪ {⊥}
(ℎ, 𝑧, 𝑑1, 𝑑2, 𝑐) ↦→ 𝜁

whichworks analogously to the Generator function for hex-vertices
and the Holder function for propellers. A casing 𝜁 of a propeller
is the unique simplex incident to 𝑐 such that the integer-grid face
F𝑑1,𝑑2 (𝑧) extends into its parametric interior 𝐹𝑐 (𝜁) as visualized in
Figure 12a. It is either a face or a cell and is either the holder it-
self, or an incident simplex of higher dimensionality. Duplicates are
avoided analogously to the generators and holders by checking the
preassigned tet per simplex. The number of casings per propeller
is equal to its number of blades. Therefore, it is also equal to the
face valence of one of its |𝑉H | many resulting hex-edges. The con-
sistent enumeration of the casings in a counterclockwise manner
will ensure the existence of the connection offset in Section 5.4.

(FC) (EF) (EC) (V)(E)

Fig. 13. The cases to consider when rotationally tracing from a propeller
(red) to its blade (blue) through multiple tets. Only the last two require
exact predicate tests. (FC): From a face generator, the generator itself is the
only possible transition face. (EF): From a propeller on an edge generator
with a face holder, there is only one other face. (E): When rotating around
an edge and entering the current tet through a face, there is only one other
face to exit through. (EC): For a propeller extending from an edge into a
cell, the face on the correct side is picked. (V): On a vertex generator, the
rotational trace must intersect the open triangle.

HexHex • 11

The next step is to follow the directions of the casings by rotat-
ing 90 degrees from a propeller to its blade, for which the strategy
is similar to how the 𝛼1 dart interconnections are determined in
HexEx. For each local propeller 𝑝 and each casing 𝜁 of 𝑝 with direc-
tion 𝑑2 in the chart of a tet 𝑐 , while we do not find the blade in the
current tet 𝑐 , we leave the tet 𝑐 through a face, incident to the holder,
that intersects the spanned integer-grid face, into an adjacent tet 𝑐′,
computed by a function PickNextHalffaceToBlade (Algorithm 7).
When entering tet 𝑐′, our parameters are updated according to the
transition function between 𝑐 and 𝑐′. The required predicate tests
can be simplified depending on the generator and holder type. For
example, when rotating around an edge generator and entering
the current tet through a face, the only possible exit face is the
other face incident to the edge. For a holder that is identical to the
generator, the function PickNextHalffaceToBlade is not needed
as the blade will always have an image in the same chart as the
propeller. All cases to consider are shown in Figure 13. Since the
blade relationship between propellers is symmetric, meaning one
propeller is a blade of another if and only if that propeller is a blade,
we only rotationally trace once between two propellers.

After this step, the number of hex-faces is given by

|𝐹H | =
1
4

∑︁
𝑔∈G
|𝑉H (𝑔) | ·

1
2

∑︁
𝑝∈P𝑙 (𝑔)

|blades(𝑝) |

5.3.4 Hex-Corner Enumeration. As preparation
for the final hex-cell extraction step, the hex-
corners are enumerated, which are the triplets
of local propellers that span a hex-cell (see inset
figure). Because the local connectivity for each
hex-vertex is identical, one (local) hex-corner
represents the corner of |𝑉H (𝑔) | hex-cells.

For each generator𝑔 ∈ G, we enumerate the set of its local corners
C𝑙 (𝑔) as all triples (𝑝1, 𝑝2, 𝑝3) ∈ P𝑙 (𝑔)3 such that 𝑝2 = blade𝑖 (𝑝1)
for some index 𝑖 and 𝑝2 = blade𝑖+1 (𝑝1). If the holder of the propeller
𝑝1 is part of the tet mesh interior, we consider its list of blades to be
cyclic, meaning (𝑝1, blade |𝑏𝑙𝑎𝑑𝑒𝑠 (𝑝1) |−1 (𝑝1), blade0 (𝑝1)) is another
hex-corner.
Because the blades were enumerated in counterclockwise order,

all hex-corners are right-hand oriented and we do not need to do
any exact predicate checks. Implicitly, a hex-corner corresponds
to an integer-grid cell extending from an integer-grid point into
the parametrization. Only one of the three possible orderings of
propellers per hex-corner is stored to avoid duplicates.

After the enumeration of hex-corners, the number of hex-cells is
given by

|𝐶H | =
1
8

∑︁
𝑔∈G
|𝑉H (𝑔) | · |C𝑙 (𝑔) |

5.4 Global Connectivity Extraction
The global connectivity extraction is the final step to the hex-mesh.

HexEx: [Lyon et al. 2016] interconnect their darts as follows: For
each enumerated dart 𝑑 , of which there are 48|𝐶H | many, the dart

𝛼𝑖 (𝑑), for 𝑖 = 0, 1, 2, 3, refers to the dart that shares all but the
𝑖−dimensional entity with 𝑑 . If it cannot be found in the same tet
chart as 𝑑 , the tet is exited through the face 𝑓 , which intersects
the integer-grid edge, -face and -cell given by 𝛼𝑖 (𝑑). Except for the
entering face, every face of the tet is tested, even if, considering
the 𝛼2 connection, it is not incident to the tet-simplex on which
the dart-edge lies. Because of this, this process is costly in HexEx.
Additionally,the list of darts per tet (which grows linearly with the
hex-to-tet ratio) is searched linearly to find a matching connection,
and every type of connection is checked independently.

Hex2: Unlike the blade connections, the opposite connections of
propellers also depend on the hex-vertex, not just the generator.
Therefore, we introduce the notion of a global propeller as a pair
(𝑣, 𝑝) ∈ 𝑉H (𝑔) × P𝑙 (𝑔) of a hex-vertex and a local propeller. One
global propeller corresponds to exactly one hex half-edge. The pro-
peller tracing works analogously to the rotational blade tracing
explained in Section 5.3.3 and is shown in Algorithm 8.

(1) (2a) (2b) (3a) (3b)

Fig. 14. A propeller (red) with its blade (blue) is traced to its opposite from tet
to tet through an intersected face. To find the opposite blade, the secondary
direction is considered if more than one face is intersected. (1): The face
is exited through its interior, meaning the secondary direction does not
need to be considered. (2a): The integer-edge intersects an edge shared by
two faces, the secondary direction determines which face to pick. (3b): For
an integer-edge intersecting a vertex shared by three faces, the secondary
direction is considered to pick one of the three faces. (2b,3b): Two faces are
intersected by the propeller and the integer-grid face. Either one is picked.

Starting from a hex-vertex 𝑣 and propeller 𝑝 with respective im-
ages 𝑧 ∈ Z3 and 𝑑 ∈ D in tet 𝑐𝑖 , we leave the current tet through the
face 𝑓 , determined by a function PickNextHalffaceToOpposite
(Algorithm 9), which intersects the integer-grid edge from 𝑧 to 𝑧 +𝑑
into the next tet 𝑐 𝑗 and update our images according to the transition
𝜏𝑖 𝑗 , meaning 𝑧 becomes 𝜏𝑖 𝑗 (𝑧) and 𝑑 becomes 𝑅𝑖 𝑗 (𝑑). The different
cases are shown in Figure 14. This process is repeated until 𝑧+𝑑 lies
in the parametric volume of the current tet, which is checked using
a hashmap per tet that, for each integer parameter in the parametric
volume of the tet, stores the corresponding hex-vertex. In case of a
match, the opposite propeller of (𝑣, 𝑝) must have an image in the
chart of the current tet 𝑐 . The integer-grid edge might leave a tet
through one of its vertices or edges. For this ambiguity, a secondary
direction, corresponding to one of the propeller’s blades is consid-
ered. This is necessary, as otherwise, we might twirl around a higher
singularity edge and end up in a wrong cell chart. Additionally, it
allows us to compute the connection offset that determines which
blade of the opposite propeller corresponds to which blade. Namely,
if we consider the secondary direction of the 𝑖−th blade and find
that it corresponds to the 𝑗−th blade of the opposite, the connection
offset is 𝑙 = 𝑖 + 𝑗 . The connection offset means that we need to trace
each propeller only once, instead of the amount of its blades many

12 • Kohler et al.

times.

The blade connections per local propeller and opposite connec-
tions per global propeller now define the entire hexahedral mesh.
For each hex-vertex and each hex-corner on that vertex, the seven
other corners of the same hex-cell are enumerated via opposite and
implicit oppositeblade connections.

5.5 Piecewise-Linear Edge Arcs and Face Patches

Fig. 15. A (linear) hex-mesh (model i09u from the HexMe dataset) with
overlaid piecewise-linear edge arcs extracted by Hex2. These are visibly
more detailed than their straight counterparts and reveal distortions of the
IGM near singularities.

As a new addition to the pipeline, we implemented the option to
extract edges and faces as piecewise-linear segments corresponding
to the intersections of an entire integer-grid edge or -face with the
parametrized tet-mesh. These piecewise-linear curves and surfaces
could then be used to fit higher-order meshes. We leave that to
future work. Normally, the edges of the hex-mesh are straight line
segments and the faces are quads. In contrast, piecewise-linear edges
are a collection of multiple line segments that might differ in their
directions, and piecewise-linear faces are polygonal meshes where
individual polygons might have different normals. An example is
shown in Figure 15.

Fig. 16. Mapping the intersection point of an integer-grid edge between
parametrized tets (left) back can lead to a point that does not lie on the
straight edge (right) resulting in more detailed elements.

The extraction of piecewise-linear edges is straightforwardly
integrated into the propeller tracing (Section 5.4). When tracing
through a face, its intersection with the integer-grid edge represents
an additional point on the piecewise-linear segment when being
mapped back to the domain. This point does not have to lie on
the straight line segment between the endpoints if the two tets get
warped via the IGM 𝒇 as illustrated in Figure 16.

Extracting piecewise-linear faces whose linear planar segments
correspond to the intersection of the entirely linear hex-face with
the tetrahedra requires a bit more work, though the idea remains
simple. Starting from a tet that intersects the parametric interior of

the corresponding integer-grid face, all other intersecting tets are
enumerated using a flood-fill approach. From a tet, an adjacent tet is
only checked if the common face intersects the parametric interior
of the integer-grid face. Using the piecewise-linear segments from
the edge extraction, these intersection polygons are cropped to up
to an octagon, and mapped back to the domain, where they form
the linear patches of a hex-face.

5.6 Runtime Analysis
We now analyze the asymptotic runtimes of the individual subtasks
of HexEx and Hex2 and explain the impact of our contributions.
Two key quantities influence the algorithm’s runtime: the number
of elements in the input tet-mesh and the number of elements in
the output hex-mesh induced by the IGM.
Let us consider an input tetrahedral mesh T = (𝑉T , 𝐸T , 𝐹T ,𝐶T)

resulting in a hexahedral meshH = (𝑉H, 𝐸H, 𝐹H,𝐶H). We denote
the hex-to-tet ratio by 𝛿 =

|𝐶H |
|𝐶T | and define 𝐿 = 𝛿

1
3 . 𝐿 is a measure

for the parametrization refinement and is proportional to the aver-
age length of a parametrized tet-edge. In the following, we review
each step of the extraction process and compare HexEx and Hex2

analytically. Table 3 shows a summary of the observations.
Table 3. Asymptotic runtimes of the HexEx counterparts to the Hex2 sub-
routines.

Task HexEx Hex2

Preprocessing O(T) O(T)
Vertex Extraction O(T𝐿3) O(T𝐿2)
Local Connectivity O(T𝐿6) O(T)
Edge Extraction O(T𝐿6) O(T𝐿3)
Cell Extraction O(T𝐿3) O(T𝐿3)

5.6.1 Preprocessing. The preprocessing phase is asymptotically
identical for HexEx and Hex2. It iterates over the elements of the in-
put mesh to extract transition functions, calculate singularities, and
sanitize errors in the parametrization, so it is linear in the number
of tet-elements. It does not depend on the number of hex-elements.
Since Hex2 optimizes the vertex-parameter updates as explained
in Section 5.1 and can use precomputed transition functions and
valences, its hidden runtime constants are lower than the ones of
its predecessor.

5.6.2 Vertex Extraction. Both algorithms extract the vertices lin-
early in the number of tet-elements. However, since HexEx iterates
over all vertices, edges, faces, and cells separately and Hex2 iterates
over the cells only, the number of tet-elements contributes more to
HexEx than to Hex2. Testing every point in the axis-aligned bound-
ing box of a face or tet is cubic in 𝐿, whereas the rasterization is
only quadratic in 𝐿. This is because, for each tet, both the number
of scanplanes and number of scanlines per scanplane are linear in
𝐿. Once we have a 1𝑑 scanline, we do not need to check every point
on it anymore, removing one factor 𝐿 from the complexity.

5.6.3 Local Connectivity. For HexEx, we count everything to the
local connectivity that gives us the same connectivity information
as the propellers and their blade connections. This includes the dart

HexHex • 13

extraction and the connections of the 𝛼1, 𝛼2, 𝛼3 pointers. Darts are
enumerated per hex-vertex, and the number of hex-vertices per
generator is cubic in 𝐿. For each dart, to find a corresponding dart,
a list of darts per tet is searched linearly, and the number of darts
per tet is, again, cubic in 𝐿, giving us a complexity of O(T𝐿6) in
total. In contrast, Hex2 does enumerate its local propellers once per
generator, independent of the number of hex-vertices on it, and the
connections to blades are also computed on this local level. This
means our local connectivity extraction only grows in the possible
number of generators, bounded by the number of tet-elements, no
matter the size of the parametrization, i.e., O(T).

5.6.4 Edge Extraction. Hex-edges are defined by the 𝛼0 connections
between darts in HexEx. Since these connections are computed
analogously to the other dart connections, the asymptotic runtime
is identical to the one of the local connectivity extraction: O(T𝐿6).
The number of hex-edges per generator grows cubically in 𝐿. For
Hex2, the edge extraction corresponds to the global connectivity
extraction. Since we use a hashmap to find a hex-vertex within a tet,
instead of linearly searching through a list, Hex2 only takes O(T𝐿3)
time.

5.6.5 Cell Extraction. Constructing the hex-mesh requires an iter-
ation over all darts, of which there are O(|𝐶H |) = O(T𝐿3) many.
The postprocessing step, which we also consider as part of this step,
requires an iteration over all hex-vertices, which is asymptotically
the same. In Hex2, we iterate over all hex-vertices and their incident
hex-corners to extract the hex-cells, which takes O(T𝐿3) time.

In total, we get a runtime O(T𝛿2) for HexEx, and O(T𝛿) = O(H)
for HexEx, evaluating to a factor of O(𝐿3) = O(𝛿). We show in
Section 6.1 that Hex2 is significantly faster than HexEx, in particular
for large hex-to-tet ratios, but also if the hex-to-tet ratio is small
(< 1).

6 Results
In the following, we compare our algorithm Hex2 to its predecessor
HexEx on examples of various complexity from the HexMe dataset
[Beaufort et al. 2022] with parametrizations generated using the
state-of-the-art algorithm by [Liu and Bommes 2023]. This yielded
103 valid IGMs. Some samples are displayed in Figure 17. The gen-
erated integer-grid maps (IGMs) deliberately result in coarse hex-
meshes to measure meshes with a low hex-to-tet ratio as well as
a larger hex-to-tet ratio by upscaling the parametrization, which
corresponds to a refinement of the hexahedral mesh. The hex-mesh
extraction algorithm only depends on the number of tet- and hex-
elements. It does not depend on the structural mesh complexity
indicated by the prefix s (simple), n (nasty) or i (industrial). Hence,
some studies in Section 6.2 were evaluated on the relatively simple
sphere model s17c without loss of generality. All reported eval-
uations were run on an Apple M1 Ultra. For Hex2, if not stated
otherwise, precomputed edge valences and transitions were utilized,
no piecewise-linear elements were extracted, and parallelization
was disabled. HexEx does not offer the option to utilize precomputed
values during preprocessing. However, we show in Section 6.2.2 that
Hex2 is notably faster even with recomputing the transitions and

valences. Furthermore, the impact of the preprocessing becomes
negligible with large hex-to-tet ratios.

6.1 Runtimes
Our algorithm outperforms HexEx on all models in the HexMe data
set. We measured the runtimes of HexEx, Hex2 without paralleliza-
tion, and Hex2 utilizing 8 cores on the 103 models with different
parametrization refinement factors (1, 2, 4) that increase the number
of hexes being extracted as explained in Section 6.2.3. Single-core
Hex2 is about 10−40 times faster than its predecessor, depending on
the hex-to-tet ratio 𝛿 =

|𝐶H |
|𝐶T | . Multicore Hex2 is, on average, over 50

times faster than HexEx. The total runtimes vary from 0.59− 69.86𝑠
in HexEx, 0.02 − 3.7𝑠 in single-core Hex2, and 0.01 − 1.21𝑠 in multi-
core Hex2. The timings for a selection of models are presented in
Table 4.

Not only is the total runtime reduced from HexEx to Hex2, but the
runtimes of every subtask are also reduced. We observed that the
hex-to-tet ratio 𝛿 strongly influences the performance gain, confirm-
ing the theoretical analysis given in Section 5.6. For coarse meshes
with a low 𝛿 , most generators will contain no more than a single
hex-vertex, reducing the possible impact of the local connectivity
extraction and the rasterization. For such meshes, the preprocessing
is the dominant part. The more refined the hex-mesh, i.e. the larger
𝛿 is, the more significant the optimizations become. In particular,
the impact of the local connectivity extraction on the total runtime
decreases to a negligible part with an increase of the hex-to-tet
ratio since it does not depend on the number of hex-vertices per
generator. In HexEx, this part of the mesh extraction process in-
stead increases to about 25% of the total runtime. This can be seen
in Figure 18, which shows a trend for how the proportions of the
different subtasks change with different 𝛿 . For large 𝛿 , in HexEx,
four dominant subtasks remain: Local and global connectivity ex-
traction (edge tracing), hex-mesh construction, and postprocessing.
In Hex2, the dominant subtasks for large 𝛿 are the global connec-
tivity extraction and the hex-mesh construction. The performance
costs of the hex-mesh construction partially stem from our use of
OpenVolumeMesh [Kremer et al. 2013].

6.2 Experiments
We now present the impact of certain parameters and properties
on the performance of Hex2. Namely, we evaluated the effects of
(i) using different epsilons for the vertex extraction, (ii) utilizing
precomputed transitions and edge valences on the preprocessing,
(iii) the hex-to-tet ratio on the total runtime, (iv) the rasterization on
the hex-vertex extraction, (v) using a hashmap on the connectivity
extraction, and (vi) the effects of the piecewise-linear curve and
surface extraction on the runtime.

6.2.1 Epsilon. We run all models for IGM scaling factors 1, 2 and
4 and 𝜀 ∈ {10, 1, 10−1, ..., 10−21, 10−22, 0}. For 𝜀 = 10−16, the ras-
terization succeeds for all models. Even for 𝜀 = 0, we capture all
points for 101/103 models. For 𝜀 ≤ 10−17, there are two models
where the rasterization misses a single integer-grid point: n07u and
n08c. Hence, we defined the default 𝜀 = 10−6 to still be much larger
than any observed failure cases without any performance costs as

14 • Kohler et al.

Table 4. Evaluation on different models of the HexMe dataset with different parametrization scalings. Displayed are from left to right the model, the
parametrization refinement 𝑠 , the number of tetrahedral elements in the input, the number of hexahedral elements in the output, their ratio 𝛿 , the runtime of
HexEx, the runtime of Hex2 using a single core (SC) and 8 cores (MC), their respective ratio compared to HexEx, the peak memory usage of HexEx, the peak
memory usage of Hex2 (single-core) and their ratio. The last three rows show the averages over all meshes for the three refinement levels.

Input Runtime Memory

Model 𝑠 |𝐶T | |𝐶H | 𝛿 HexEx [s] Hex2 (SC/MC) [s] Hex2 (SC/MC)
HexEx ↓ HexEx [MB] Hex2 [MB] Hex2

HexEx ↓
s04b 1 66304 5428 0.08 1.25 0.09/0.03 7.02%/2.20% 63 15 23.84%
s04b 2 66304 43424 0.65 5.29 0.18/0.07 3.48%/1.28% 503 41 8.23%
s04b 4 66304 347392 5.24 40.55 0.77/0.35 1.90%/0.86% 4019 281 6.99%
s09u 1 100130 4590 0.05 1.58 0.13/0.03 7.97%/2.13% 51 21 40.61%
s09u 2 100130 36720 0.37 5.47 0.25/0.08 4.55%/1.44% 408 38 9.42%
s09u 4 100130 293760 2.93 31.12 0.85/0.37 2.74%/1.19% 3256 233 7.17%
s10u 1 28217 4986 0.18 0.85 0.05/0.02 5.85%/2.23% 56 7 13.25%
s10u 2 28217 39888 1.41 4.53 0.13/0.05 2.84%/1.17% 438 35 7.91%
s10u 4 28217 319104 11.31 33.72 0.59/0.28 1.74%/0.83% 3502 237 6.78%
s17c 1 28028 4608 0.16 0.78 0.05/0.02 6.20%/2.36% 51 7 14.29%
s17c 2 28028 36864 1.32 4.06 0.12/0.05 2.98%/1.25% 408 32 7.93%
s17c 4 28028 294912 10.52 30.30 0.54/0.26 1.79%/0.87% 3261 217 6.67%
n03u 1 33719 5274 0.16 0.94 0.06/0.02 6.23%/2.14% 62 9 14.00%
n03u 2 33719 42192 1.25 4.78 0.14/0.06 3.02%/1.18% 473 38 8.13%
n03u 4 33719 337536 10.01 34.86 0.65/0.31 1.85%/0.89% 3687 247 6.70%
n04c 1 7122 4233 0.59 0.59 0.02/0.01 3.97%/1.57% 49 5 9.58%
n04c 2 7122 33864 4.75 3.84 0.07/0.03 1.91%/0.83% 380 28 7.38%
n04c 4 7122 270912 38.04 46.58 0.39/0.22 0.84%/0.46% 3037 202 6.67%
n07c 1 39652 5638 0.14 1.09 0.07/0.02 6.28%/2.08% 65 10 14.98%
n07c 2 39652 45104 1.14 5.38 0.17/0.06 3.15%/1.20% 520 42 8.10%
n07c 4 39652 360832 9.10 37.23 0.73/0.35 1.97%/0.93% 4151 286 6.89%
n10u 1 133239 6511 0.05 2.23 0.19/0.05 8.40%/2.41% 74 29 39.01%
n10u 2 133239 52088 0.39 7.74 0.37/0.12 4.76%/1.57% 589 54 9.19%
n10u 4 133239 416704 3.13 44.36 1.22/0.54 2.74%/1.21% 4700 324 6.89%
n12b 1 72814 5508 0.08 1.38 0.10/0.03 7.04%/2.39% 64 15 24.05%
n12b 2 72814 44064 0.61 5.68 0.22/0.09 3.87%/1.51% 510 47 9.22%
n12b 4 72814 352512 4.84 38.32 0.84/0.40 2.18%/1.04% 4072 300 7.37%
i01c 1 137233 6190 0.05 2.24 0.23/0.07 10.48%/3.02% 71 29 41.44%
i01c 2 137233 49520 0.36 7.41 0.44/0.14 5.94%/1.90% 564 54 9.60%
i01c 4 137233 396160 2.89 43.68 1.26/0.57 2.89%/1.29% 4502 321 7.12%
i02c 1 123043 6389 0.05 2.08 0.18/0.06 8.82%/2.81% 73 26 35.86%
i02c 2 123043 51112 0.42 7.39 0.36/0.13 4.86%/1.69% 580 55 9.41%
i02c 4 123043 408896 3.32 44.75 1.28/0.56 2.87%/1.26% 4626 322 6.96%
i09u 1 793884 7188 0.01 10.03 1.11/0.25 11.07%/2.45% 84 156 186.51%
i09u 2 793884 57504 0.07 19.19 1.61/0.40 8.41%/2.07% 661 175 26.47%
i09u 4 793884 460032 0.58 69.86 3.70/1.21 5.30%/1.73% 5150 466 9.05%
i18c 1 73118 5465 0.07 1.48 0.11/0.04 7.56%/2.65% 64 16 25.50%
i18c 2 73118 43720 0.60 5.86 0.24/0.09 4.04%/1.50% 508 45 8.94%
i18c 4 73118 349760 4.78 37.18 0.86/0.39 2.30%/1.05% 4049 293 7.24%
i25u 1 200188 6050 0.03 2.93 0.27/0.07 9.08%/2.49% 70 41 58.50%
i25u 2 200188 48400 0.24 8.46 0.48/0.15 5.70%/1.79% 554 55 9.97%
i25u 4 200188 387200 1.93 43.06 1.38/0.59 3.21%/1.38% 4415 323 7.32%

Average 1 107821 5345 0.15 1.77 0.15/0.04 8.69%/2.52% 62 23 37.68%
Average 2 107821 42762 1.19 6.13 0.29/0.10 4.66%/1.57% 485 48 9.85%
Average 4 107821 342103 9.53 39.15 0.94/0.41 2.39%/1.05% 3843 275 7.15%

HexHex • 15

Fig. 17. Three sample tet-meshes (green) from the HexMe dataset, s09u, i01c and i09u, and their extracted hex-meshes (blue). Annotated are the respective
number of tetrahedra and hexahedra.

δ

HexEx

Hex²

Fig. 18. Distribution of subtasks in HexEx (top) and Hex2 (bottom) for models with different hex-to-tet ratios 𝛿 . The models are sorted from left (coarse/small
𝛿) to right (fine/large 𝛿). The runtimes of the individual tasks are shown in seconds and are omitted for readability if they take less than 5% of the total
runtime. Particularly notable is the proportion of the local connectivity extraction (green), which grows in HexEx, but becomes negligible in Hex2.

shown in Figure 19. Interestingly, a translation of the parameters
by (109, 109, 109) to reduce precision led to no missing hex-vertices
for these two models, even for 𝜀 = 0, likely a consequence of the
precision truncation in the sanitization of the IGM.

10 1 0.1 0.01
0.001

0.0001
10

05

10
06

10
07

10
08

10
09

10
10

10
11

10
12

10
13

10
14

10
15

10
16

10
17

10
18

10
19

10
20

10
21

10
22 0

0.026

0.027

0.028

0.029

0.030

0.031

0.032

Ru
nt

im
e

[s
] (

Ve
rte

x
Ex

tra
ct

io
n)

Average Vertex Extraction Runtime

Fig. 19. Average (over 103 meshes with scaling factors 1, 2, 4) runtime of
the vertex extraction for different rasterization tolerances 𝜀 ≥ 0 (default
𝜀 = 10−6). For small 𝜀 ≪ 1, there is no notable difference in performance.

To further test our algorithm, we generated several million ran-
dom tetrahedra within the required 32−bit integer range. None of
these tetrahedra were missing any vertices, even for 𝜀 = 0.

6.2.2 Preprocessing. Since the parametrizations generated by [Liu
and Bommes 2023] already contain transition rotations and edge va-
lences, there is no need to recompute these values. We measured the
runtimes of the preprocessing phase of Hex2 for different models of
the HexMe dataset when manually computing the values compared

to utilizing the precomputed values as well as the preprocessing
of HexEx. The runtime of the preprocessing step increases with
the size of the tet-mesh. Even when recomputing the transitions
and valences, Hex2 performed better than HexEx. This shows that
our optimization for the vertex parameter propagation explained in
Section 5.1 contributes to a decrease in runtime as well. The results
are visualized in Figure 20.

s04b s09u s10u s17c n03u n04c n07c n10u n12b i01c i02c i09u i18c i25u
Model

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Ru
nt

im
e

[s
] (

Pr
ep

ro
ce

ss
in

g) HexEx
HexHex (recompute)
HexHex (use precomputed)

Fig. 20. Runtimes of the preprocessing phase for different models of the
HexMe dataset when computing edge valences and transition functions
manually (gray) compared to using precomputed values in the input (blue).
For comparison, the runtime in HexEx is also displayed (beige).

6.2.3 Hex-Mesh Density. To measure the effect of parametrization
refinement or hex-to-tet ratio 𝛿 , we measured the runtimes on a

16 • Kohler et al.

model (s17c) with an increasing number of hex-elements. Given
a tet-mesh and IGM, the resolution of the resulting hex-mesh can
be increased by multiplying all per-cell-vertex parameters by an
integer factor 𝑠 ∈ N≥1 resulting in a hex-mesh with 𝑠3 as many cells.
The sphere mesh s17c is visualized in Figure 21 for 𝑠 = 1, 2, 3, 4. Note
that this is not exactly equivalent to subdividing a coarser hex-mesh
as explained in Section 5.5, although the effects are similar.

Fig. 21. The sphere model s17c and the extracted hex-meshes for four refine-
ment levels 1, 2, 3 and 4 in which the number of hex-cells grows cubically.

As we increase the parametrization scaling factor, the runtime of
Hex2 increases significantly slower than the runtime of HexEx, as
shown in Table 5. For the sphere model s17c consisting of 28 028
tets and with a parametrization scaling factor of 𝑠 = 12, resulting
in 7 962 624 hexes, the runtime of HexEx exploded to over an hour
whereas HexEx takes humanly bearable 9.33 seconds. The runtime
ratio between Hex2 and HexEx becomes smaller with larger 𝛿 (from
6.3% for 𝑠 = 1 to 0.23% for 𝑠 = 12), confirming that our algorithm
scales much better with the number of hex-elements as analysed in
Section 5.6.
Table 5. Runtimes of HexEx and Hex2 for the model s17c, consisting of
28 028 tetrahedra, where the parametrization gets more and more upscaled,
resulting in more hex-cells. The larger the scaling factor, the more efficient
our algorithm is relative to HexEx.

𝑠 |𝐶H | 𝛿 HexEx [s] Hex2 [s] Hex2
HexEx ↓

1 4 608 0.16 0.80 0.05 6.30%
2 36 864 1.32 4.00 0.14 3.61%
3 124 416 4.44 12.28 0.28 2.27%
4 294 912 10.52 30.71 0.57 1.85%
5 576 000 20.55 66.09 0.98 1.48%
6 995 328 35.51 136.38 1.49 1.09%
7 1 580 544 56.39 265.35 2.21 0.83%
8 2 359 296 84.18 496.82 3.21 0.65%
9 3 359 232 119.85 886.96 4.37 0.49%
10 4 608 000 164.41 1 534.54 5.74 0.37%
11 6 133 248 218.83 2 534.19 7.33 0.29%
12 7 962 624 284.10 4 049.37 9.33 0.23%

6.2.4 Rasterization. For the model s17c, we measured the impact
of the hex-vertex extraction by rasterizing the tets compared to
testing every integer-grid point in the bounding box. This exper-
iment was run using different parametrization scaling factors to
highlight the different asymptotic runtimes of the two methods,
which are displayed in Figure 22. The rasterization is faster for all
scaling factors, and the speedup is more significant, the larger the
factor becomes.

6.2.5 Hashmap. We evaluated the impact of using a hashmap in-
stead of a list to store and access the extracted data structure during

0.2 1.3 4.4 10.5 20.6 35.5 56.4 84.2 119.9 164.4 218.8 284.1
0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

[s
]

Bounding Box
Rasterization

Fig. 22. Runtimes of the hex-vertex extraction on a single core for the model
s17c with increasing hex-to-tet ratio 𝛿 using the rasterization in Hex2 (blue)
compared to the naive approach of testing each point in the bounding box
of a tet (gray).

0.2 1.3 4.4 10.5 20.6 35.5 56.4 84.2 119.9 164.4 218.8 284.1
0

50

100

150

200

Ru
nt

im
e

[s
] (

Co
nn

ec
tiv

ity
 E

xt
ra

ct
io

n)

HexEx (Linear)
HexEx (Hash)
HexHex (Linear)
HexHex (Hash)

Fig. 23. Runtimes of the connectivity extraction of HexEx and HexHex, with
using a hashmap and using a list to access darts or propellers per tet, for
the sphere model s17c with an increasingly higher hex-to-tet ratio 𝛿 .

the connectivity extraction. This means, we both implemented a
hashmap in HexEx, so darts can be accessed on a per tet- and pa-
rameter level, as well as a linear list in Hex2, so propellers are only
accessed on a per tet level. For these four options, we measured
the runtimes of the connectivity extraction, including both local
and global connectivity, as shown in Figure 23 and Table 6, for the
example model s17c. For coarse hex-meshes where each generator
contains mostly just a single hex-vertex, meaning there are only
a few darts or (global) propellers per tet, the difference between
the two containers in terms of performance is basically zero, as ex-
pected. The more refined the parametrization, the faster a hashmap
becomes compared to the list. Even when searching all propellers
stored per tet linearly, Hex2’s connectivity extraction is still no-
tably faster than HexEx’s, whether darts are accessed via a hashmap
or searched for in a list. Noticeably, using a hashmap makes the
algorithm scale much better for higher hex-to-tet ratios, which co-
incides with our theoretical analysis. Within the range of evaluated
refinements (𝛿 = 1 to 12), Hex2 with a hashmap is the only version
exhibiting linear growth in 𝛿 , while the others grow quadratically.
We conclude that, while using a hashmap does contribute to a faster
connectivity extraction, the advantages of our data structure as well
as the utilization of the constant local connectivity per generator
described in Section 5.3 are more impactful.

6.2.6 Piecewise-Linear Extraction. Wemeasured how the runtime of
Hex2 increases when enabling the additional extraction of piecewise
linear elements. When enabling only the piecewise linear edge
extraction, there is a small overhead since it entails both computing
the intersections of integer-grid edges, mapping them back to the

HexHex • 17

Table 6. Impact of using a hashmap versus a linear list to access darts or propellers per tet. The table shows, for the model s17c using different parametrization
scalings, the runtimes of the connectivity extraction, local and global, for HexEx using a list (as-is), for HexEx using a hashmap, for Hex2 using a list, and for
Hex2 using a hashmap (default).

Input HexEx (Linear) HexEx (Hash) Hex2 (Linear) Hex2 (Hash)

𝑠 |𝐶H | 𝛿 HexEx [s] HexEx [s] Hex2 [s] Hex2 (L)
HexEx (L) Hex2 [s] Hex2 (H)

HexEx (H)
HexEx (H)
HexEx (L)

Hex2 (H)
Hex2 (L)

Hex2 (H)
HexEx (L)

1 4608 0.16 0.44 0.41 0.01 2.87% 0.01 3.16% 93.00% 102.09% 2.93%
2 36864 1.32 2.11 1.94 0.06 2.71% 0.06 3.30% 92.32% 112.40% 3.05%
3 124416 4.44 6.48 5.13 0.15 2.28% 0.12 2.40% 79.19% 83.68% 1.90%
4 294912 10.52 16.83 10.45 0.32 1.88% 0.23 2.18% 62.14% 71.93% 1.36%
5 576000 20.55 40.53 18.57 0.62 1.54% 0.41 2.20% 45.82% 65.44% 1.01%
6 995328 35.51 92.31 30.35 1.15 1.24% 0.57 1.89% 32.88% 50.01% 0.62%
7 1580544 56.39 196.18 46.18 2.12 1.08% 0.82 1.77% 23.54% 38.51% 0.42%
8 2359296 84.18 395.34 67.85 3.65 0.92% 1.12 1.65% 17.16% 30.78% 0.28%
9 3359232 119.85 745.36 94.54 6.28 0.84% 1.52 1.61% 12.68% 24.27% 0.20%
10 4608000 164.41 1341.28 129.08 10.92 0.81% 1.95 1.51% 9.62% 17.84% 0.15%
11 6133248 218.83 2285.84 167.29 17.60 0.77% 2.43 1.45% 7.32% 13.82% 0.11%
12 7962624 284.10 3735.47 217.63 28.21 0.76% 3.03 1.39% 5.83% 10.76% 0.08%

mesh domain, and constructing a second mesh. When also enabling
the extraction of piecewise linear faces, the extraction time is up to
four times as large because, for every hex-face, we compute all of its
intersections with the parametrization, which requires numerous
exact predicate tests and polygon clipping. The resulting runtimes
are visualized in Figure 24.

s04b s09u s10u s17c n03u n04c n07c n10u n12b i01c i02c i09u i18c i25u
Model

0.00

0.25

0.50

0.75

1.00

1.25

Ru
nt

im
e

[s
]

Hex-Mesh Extraction
+ Piecewise Linear Edges
+ Piecewise Linear Faces

Fig. 24. The runtimes of Hex2 (using 8 threads) for different models of
the HexMe dataset when extracting a normal hexahedral mesh with no
piecewise linear elements (red), when extracting a hexahedral mesh plus
piecewise linear edges (blue), and when extracting a hexahedral mesh plus
both piecewise linear edges and piecewise linear faces (green).

6.3 Memory
Lastly, we evaluated the peak memory usage when running both
algorithms, presented in Table 4. Although this was not the main
focus when Hex2 was developed, the propeller data structure, as well
as the utilization of constant local connectivity property, naturally
leads to lower overhead compared to the dart data structure. Peak
storage consumption indeed decreased from HexEx to Hex2 for
all but one model, on average by half for the coarsest inputs. The
notable exception is i09 with a scaling factor of 1, the model with the
lowest 𝛿 = 0.01, for which our algorithm required nearly twice as

much memory as HexEx. However, this mesh only requires 156 MB
(84 MB with HexEx). For inputs with large memory consumption in
HexEx, i.e. inputs with a large hex-to-tet ratio 𝛿 , the peak memory
usage is reduced from several GB in HexEx to a few hundred MB in
Hex2.

7 Conclusion and Future Work
We presented HexHex (=Hex2), a hexahedral mesh extraction al-
gorithm that is significantly faster than HexEx for state-of-the-art
integer-grid maps without defects. It extracts piecewise-linear edges
and -faces if desired. We attribute the speedup of HexHex to its use
of the propeller data structure, rasterization methods, and utilization
of the constant local topology property.

The extraction of piecewise-linear elements could serve as a basis
for extracting higher-order meshes with HexHex.

We designed and implemented the propeller data structure specif-
ically for the hex-mesh extraction process. Exploring other applica-
tions of propellers as a mesh representation could be interesting.

Acknowledgments
This project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 853343).

References
Cecil G Armstrong, Harold J Fogg, Christopher M Tierney, and Trevor T Robinson. 2015.

Common Themes in Multi-block Structured Quad/Hex Mesh Generation. Procedia
Engineering 124 (2015). doi:10.1016/j.proeng.2015.10.123

Marco Attene. 2020. Indirect Predicates for Geometric Constructions. Computer-Aided
Design 126 (2020), 102856. doi:10.1016/j.cad.2020.102856

Pierre-Alexandre Beaufort, Maxence Reberol, D. Kalmykov, H. Liu, Franck Ledoux, and
D. Bommes. 2022. Hex Me If You Can. Computer Graphics Forum 41 (Oct. 2022),
125–134. doi:10.1111/cgf.14608

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.
2013a. Integer-Grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4 (July
2013). doi:10.1145/2461912.2462014

https://doi.org/10.1016/j.proeng.2015.10.123
https://doi.org/10.1016/j.cad.2020.102856
https://doi.org/10.1111/cgf.14608
https://doi.org/10.1145/2461912.2462014

18 • Kohler et al.

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013b. Quad-mesh generation and processing: A survey. In Com-
puter Graphics Forum, Vol. 32.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation.
ACM Trans. Graph. 28, 3 (July 2009). doi:10.1145/1531326.1531383

M. Botsch, S. Steinberg, Stephan Bischoff, and Leif Kobbelt. 2002. OpenMesh - a generic
and efficient polygon mesh data structure. (Feb. 2002).

Hendrik Brückler, David Bommes, and Marcel Campen. 2022. Volume parametrization
quantization for hexahedral meshing. ACM Trans. Graph. 41, 4 (July 2022). doi:10.
1145/3528223.3530123

Hendrik Brückler, David Bommes, and Marcel Campen. 2024. Integer-Sheet-Pump
Quantization for Hexahedral Meshing. In Computer Graphics Forum, Vol. 43.

Hendrik Brückler and Marcel Campen. 2023. Collapsing Embedded Cell Complexes for
Safer Hexahedral Meshing. ACMTrans. Graph. 42, 6 (Dec. 2023). doi:10.1145/3618384

Hendrik Brückler, Ojaswi Gupta, Manish Mandad, and Marcel Campen. 2022. The 3D
Motorcycle Complex for Structured Volume Decomposition. Computer Graphics
Forum 41, 2 (2022), 221–235. doi:10.1111/cgf.14470

Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. 1998. Directed edges – a scalable
representation for triangle meshes. Journal of Graphics tools 3, 4 (1998).

Marcel Campen. 2017. Partitioning surfaces into quadrilateral patches: A survey. In
Computer Graphics Forum, Vol. 36.

Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx:
Robust quad mesh extraction. ACM Trans. Graph. 32, 6 (2013).

Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas
Ray, and Dmitry Sokolov. 2021. Foldover-free maps in 50 lines of code. ACM Trans.
Graph. 40, 4 (July 2021). doi:10.1145/3450626.3459847

Steffen Hinderink, Hendrik Brückler, and Marcel Campen. 2024. Bijective Volumetric
Mapping via Star Decomposition. ACM Trans. Graph. 43, 6 (Nov. 2024). doi:10.1145/
3687950

Steffen Hinderink and Marcel Campen. 2023. Galaxy Maps: Localized Foliations for
Bijective Volumetric Mapping. ACM Trans. Graph. 42, 4 (July 2023). doi:10.1145/
3592410

Tengfei Jiang, Jin Huang, Yuanzhen Wang, Yiying Tong, and Hujun Bao. 2013. Frame
field singularity correction for automatic hexahedralization. IEEE Transactions on
Visualization and Computer Graphics 20, 8 (Aug. 2013). doi:10.1109/TVCG.2013.250

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of hermite
data. ACM Trans. Graph. 21, 3 (July 2002), 339–346. doi:10.1145/566654.566586

Pierre Kraemer, Lionel Untereiner, Thomas Jund, Sylvain Thery, and David Cazier. 2014.
CGoGN: N-dimensional Meshes with Combinatorial Maps. doi:10.1007/978-3-319-
02335-9_27

Michael Kremer, David Bommes, and Leif Kobbelt. 2013. OpenVolumeMesh – A versatile
index-based data structure for 3D polytopal complexes. In Proceedings of the 21st
International Meshing Roundtable. Springer. doi:10.1007/978-3-642-33573-0_31

Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface
Parameterization using Branched Coverings. Computer Graphics Forum 26, 3 (2007),
375–384. doi:10.1111/j.1467-8659.2007.01060.x

Yufei Li, Yang Liu, Weiwei Xu, WenpingWang, and Baining Guo. 2012. All-hex meshing
using singularity-restricted field. ACM Trans. Graph. 31, 6 (Nov. 2012). doi:10.1145/
2366145.2366196

Heng Liu and David Bommes. 2023. Locally Meshable Frame Fields. ACM Transactions
on Graphics 42, 4 (2023). doi:10.1145/3592457

Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. 2018.
Singularity-Constrained Octahedral Fields for Hexahedral Meshing. ACM Trans.
Graph. 37, 4 (July 2018). doi:10.1145/3197517.3201344

William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987),
163–169. doi:10.1145/37402.37422

Max Lyon, David Bommes, and Leif Kobbelt. 2016. HexEx: Robust Hexahedral Mesh
Extraction. ACM Trans. Graph. 35, 4 (July 2016). doi:10.1145/2897824.2925976

Manish Mandad and Marcel Campen. 2019. Exact Constraint Satisfaction for Truly
Seamless Parametrization. Computer Graphics Forum 38, 2 (2019). doi:10.1111/cgf.
13625

Jan Möbius and Leif Kobbelt. 2012. OpenFlipper: An Open Source Geometry Processing
and Rendering Framework. In Curves and Surfaces. LNCS, Vol. 6920. Springer Berlin
/ Heidelberg, 488–500. doi:10.1007/978-3-642-27413-8_31

Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. 2011. CubeCover – Parameter-
ization of 3D Volumes. Computer Graphics Forum 30, 5 (2011). doi:10.1111/j.1467-
8659.2011.02014.x

Valentin Zénon Nigolian, Marcel Campen, and David Bommes. 2023. Expansion Cones:
A Progressive Volumetric Mapping Framework. ACM Trans. Graph. 42, 4 (July 2023).
doi:10.1145/3592421

Valentin Zénon Nigolian, Marcel Campen, and David Bommes. 2024. A Progressive Em-
bedding Approach to Bijective Tetrahedral Maps driven by Cluster Mesh Topology.
ACM Trans. Graph. 43, 6 (Nov. 2024). doi:10.1145/3687992

Nico Pietroni, Marcel Campen, Alla Sheffer, Gianmarco Cherchi, David Bommes, Xifeng
Gao, Riccardo Scateni, Franck Ledoux, Jean Remacle, and Marco Livesu. 2022. Hex-
mesh generation and processing: a survey. ACM Trans. Graph. 42, 2 (2022).

Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic
global parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460–1485. doi:10.
1145/1183287.1183297

Jonathan Richard Shewchuk. 1997. Adaptive precision floating-point arithmetic and
fast robust geometric predicates. Discrete & Computational Geometry 18 (1997).
doi:10.1007/PL00009321

A Exact Predicates
Hex2 implements three exact predicate functions that use ori3D by
[Richard Shewchuk 1997] to evaluate its various geometric tests.
These are presented in the following. It is crucial that the tetrahedra
of the input mesh are oriented positively

∀𝑐 ≈ (𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ 𝐶T : ori3D(𝒑(𝑣1),𝒑(𝑣2),𝒑(𝑣3),𝒑(𝑣4)) > 0

where 𝒑 : 𝑉T → R3 is the position or geometric embedding of a
vertex. Furthermore, half-faces are always oriented such that the
fourth vertex of the incident cell lies within the defined half-space.
This means that for any (inner) half-face identified by the vertices
(𝑣1, 𝑣2, 𝑣3) and its incident cell consisting of the vertices 𝑣1, 𝑣2, 𝑣3 and
𝑣4, we have ori3D(𝒑(𝑣1),𝒑(𝑣2),𝒑(𝑣3),𝒑(𝑣4)) > 0.

A.1 Generator

Algorithm 3 HexHex: Generator
Input

parameter 𝑧 ∈ R3
tet 𝑐 ∈ 𝐶T with halffaces ℎ𝑓0, ℎ𝑓1, ℎ𝑓2, ℎ𝑓3

Output
generator 𝜎 ∈ 𝑉T ∪ 𝐸T ∪ 𝐹T ∪𝐶T s.t. 𝑧 ∈ 𝐹𝑐 (𝜎)

1: 𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3 ← halfface vertices, 𝑖 = 0, 1, 2, 3
2: for 𝑖 = 0, 1, 2, 3 do
3: 𝑜𝑖 ← ori3D(𝒇 𝑐 (𝑣𝑖1), 𝒇 𝑐 (𝑣𝑖2), 𝒇 𝑐 (𝑣𝑖3), 𝑧)
4: if 𝑜𝑖 < 0 then return ⊥ //outside tet
5: if

∑
𝑜𝑖 = 1 then return 𝑣 s.t. 𝑣 ∼ ℎ𝑓𝑖 , ℎ𝑓𝑗 , ℎ𝑓𝑘 where 𝑜𝑖 = 𝑜 𝑗 = 𝑜𝑘 = 0 //on vertex

6: if
∑
𝑜𝑖 = 2 then return 𝑒 s.t. 𝑒 ∼ ℎ𝑓𝑖 , ℎ𝑓𝑗 where 𝑜𝑖 = 𝑜 𝑗 = 0 //on edge

7: if
∑
𝑜𝑖 = 3 then return ℎ𝑓𝑖 s.t. 𝑜𝑖 = 0 //on face

8: if
∑
𝑜𝑖 = 4 then return 𝑐 //in tet

To compute the generator of a given parameter 𝑧 ∈ Z3, we eval-
uate it on each of the four half-spaces whose intersection repre-
sents the tetrahedron. This results in four orientations 𝑜1, 𝑜2, 𝑜3, 𝑜4 ∈
{−1, 0, 1}. If any 𝑜𝑖 is negative, the generator is not part of 𝑐 nor is
it 𝑐 itself. Otherwise, the number of orientations being zero tells us
whether the generator is one of the four vertices (intersects three
half-faces), one of the six edges (intersects two half-faces), one of
the four faces (intersects one half-face) or the cell itself (intersects
no half-faces) as shown in Algorithm 3.

Given the generators 𝜎𝑙 and 𝜎𝑟 of two endpoints of a scanline in
a tetrahedron 𝑐 ∈ 𝐶T , all integer-grid points in between have a
common generator 𝜎 that can be determined as follows:

(1) If 𝜎𝑙 = 𝑐 or 𝜎𝑟 = 𝑐 then 𝜎 = 𝑐

(2) If 𝜎𝑙 = 𝜎𝑟 then 𝜎 = 𝜎𝑙
(3) If 𝜎𝑙 , 𝜎𝑟 ∈ 𝑉T then 𝜎 ∈ 𝐸T s.t. 𝜎𝑙 , 𝜎𝑟 ∼ 𝜎

(4) If 𝜎𝑙 , 𝜎𝑟 ∈ 𝐸T then 𝜎 ∈ 𝐹T s.t. 𝜎𝑙 , 𝜎𝑟 ∼ 𝜎 or 𝜎 = 𝑐 otherwise
(5) If 𝜎𝑙 , 𝜎𝑟 ∈ 𝐹T then 𝜎 = 𝑐

(6) If 𝜎𝑙 < 𝜎𝑟 then 𝜎 = 𝜎𝑟 if 𝜎𝑙 ∼ 𝜎𝑟 or 𝜎 = 𝜎𝑟 + 1 s.t. 𝜎 ∼ 𝜎𝑙 , 𝜎𝑟
otherwise

https://doi.org/10.1145/1531326.1531383
https://doi.org/10.1145/3528223.3530123
https://doi.org/10.1145/3528223.3530123
https://doi.org/10.1145/3618384
https://doi.org/10.1111/cgf.14470
https://doi.org/10.1145/3450626.3459847
https://doi.org/10.1145/3687950
https://doi.org/10.1145/3687950
https://doi.org/10.1145/3592410
https://doi.org/10.1145/3592410
https://doi.org/10.1109/TVCG.2013.250
https://doi.org/10.1145/566654.566586
https://doi.org/10.1007/978-3-319-02335-9_27
https://doi.org/10.1007/978-3-319-02335-9_27
https://doi.org/10.1007/978-3-642-33573-0_31
https://doi.org/10.1111/j.1467-8659.2007.01060.x
https://doi.org/10.1145/2366145.2366196
https://doi.org/10.1145/2366145.2366196
https://doi.org/10.1145/3592457
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/2897824.2925976
https://doi.org/10.1111/cgf.13625
https://doi.org/10.1111/cgf.13625
https://doi.org/10.1007/978-3-642-27413-8_31
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1145/3592421
https://doi.org/10.1145/3687992
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1007/PL00009321

HexHex • 19

where we assume w.l.o.g. 𝜎𝑙 ≤ 𝜎𝑟 . In practicality, only the first
two cases are checked for simplicity. Otherwise, the generator 𝜎 is
manually computed once for an arbitrary integer point between the
two endpoints.

A.2 Holder
To compute the holder entity of a local propeller, we utilize the
type of the generator. For example, a propeller cannot have a holder
with lower dimensionality than its generator 𝑔. The idea is the
same as in the Generator function: Given a parameter 𝑧 ∈ 𝐹𝑐 (𝑔)
in the parametric interior of a generator 𝑔, and a direction 𝑑 , we
evaluate the orientations of the parameter 𝑧 + 𝑑 against each half-
face of the tet that is incident to the generator. This means, for
a vertex generator, we need to test against three half-faces, for
edge generators, we need to test against two half-faces, and for a
face generator, we need to test against one half-face; itself. For a
cell generator, no exact predicates are required as every direction
extends into the same cell. As part of the constant local connectivity
property, we skip the propeller extraction on cell generators anyway.
If any of the orientations is negative, we do not point into the image
of the tet. Otherwise, the number of positive orientation tests give
us the holder entity. The algorithm is provided in Algorithm 4.

Algorithm 4 HexHex: Holder
Input

generator 𝑔 =Generator(𝑧, 𝑐)
parameter 𝑧 ∈ R3
direction 𝑑 ∈ D
tet 𝑐 ∈ 𝐶T

Output
holder 𝜌 ∈ 𝐸T ∪ 𝐹T ∪𝐶T

1: if 𝑔 ∈ 𝐶T then return 𝑔
2: if 𝑔 ∈ 𝐹T then
3: 𝑣1, 𝑣2, 𝑣3 ← halfface vertices of (𝑔, 𝑐)
4: 𝑜 ← ori3D(𝒇 𝑐 (𝑣1), 𝒇 𝑐 (𝑣2), 𝒇 𝑐 (𝑣3), 𝑧 + 𝑑)
5: if 𝑜 > 0 then return 𝑐 //from face into cell
6: if 𝑜 = 0 then return 𝑔 //from face along fac
7: return ⊥ //from face into other side
8: if 𝑔 ∈ 𝐸T then
9: ℎ𝑓0, ℎ𝑓1 ← halffaces of 𝑐 incident to 𝑔
10: 𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3 ← halfface vertices, 𝑖 = 0, 1
11: for 𝑖 = 0, 1 do
12: 𝑜𝑖 ← ori3D(𝒇 𝑐 (𝑣𝑖1), 𝒇 𝑐 (𝑣𝑖2), 𝒇 𝑐 (𝑣𝑖3), 𝑧 + 𝑑)
13: if 𝑜𝑖 < 0 then return ⊥ //outside tet
14: if

∑
𝑜𝑖 = 0 then return 𝑔 //from edge along edge

15: if
∑
𝑜𝑖 = 1 then return ℎ𝑓𝑖 s.t. 𝑜𝑖 = 0 //from edge into face

16: if
∑
𝑜𝑖 = 2 then return 𝑐 //from edge into cell

17: if 𝑔 ∈ 𝑉T then
18: ℎ𝑓0, ℎ𝑓1, ℎ𝑓2 ← halffaces of 𝑐 incident to 𝑔
19: 𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3 ← halfface vertices, 𝑖 = 0, 1, 2
20: for 𝑖 = 0, 1, 2 do
21: 𝑜𝑖 ← ori3D(𝒇 𝑐 (𝑣𝑖1), 𝒇 𝑐 (𝑣𝑖2), 𝒇 𝑐 (𝑣𝑖3), 𝑧 + 𝑑)
22: if 𝑜𝑖 < 0 then return ⊥ //outside tet
23: if

∑
𝑜𝑖 = 1 then return 𝑒 s.t. 𝑒 ∼ ℎ𝑓𝑖 , ℎ𝑓𝑗 where 𝑜𝑖 = 𝑜 𝑗 = 0 //from vertex into edge

24: if
∑
𝑜𝑖 = 2 then return ℎ𝑓𝑖 s.t. 𝑜𝑖 = 0 //from vertex into face

25: if
∑
𝑜𝑖 = 3 then return 𝑐 //from vertex into cell

A.3 Casing
Computing a casing entity works analogously to the Generator and
Holder functions. The algorithm is displayed in Algorithm 5. For a
parameter 𝑧 ∈ 𝐹𝑐 (𝑔) in the parametric interior of a generator 𝑔, a
direction 𝑑1 pointing into the holder ℎ, and a second, orthogonal,
direction 𝑑2, we evaluate the orientations of the parameter 𝑧 + 𝑑2
against each half-face of the tet that is incident to the holder.

Algorithm 5 HexHex: Casing
Input

holder ℎ =Holder(Generator(𝑧, 𝑐), 𝑧, 𝑑1, 𝑐)
parameter 𝑧 ∈ R3
directions 𝑑1, 𝑑2 ∈ D
tet 𝑐 ∈ 𝐶T

Output
casing 𝜁 ∈ 𝐹T ∪𝐶T

1: if ℎ ∈ 𝐶T then return ℎ

2: if ℎ ∈ 𝐹T then
3: 𝑣1, 𝑣2, 𝑣3 ← halfface vertices of (ℎ, 𝑐)
4: 𝑜 ← ori3D(𝒇 𝑐 (𝑣1), 𝒇 𝑐 (𝑣2), 𝒇 𝑐 (𝑣3), 𝑧 + 𝑑2)
5: if 𝑜 > 0 then return 𝑐
6: if 𝑜 = 0 then return ℎ
7: return ⊥
8: if ℎ ∈ 𝐸T then
9: ℎ𝑓0, ℎ𝑓1 ← halffaces of 𝑐 incident to ℎ
10: 𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3 ← halfface vertices, 𝑖 = 0, 1
11: for 𝑖 = 0, 1 do
12: 𝑜𝑖 ← ori3D(𝒇 𝑐 (𝑣𝑖1), 𝒇 𝑐 (𝑣𝑖2), 𝒇 𝑐 (𝑣𝑖3), 𝑧 + 𝑑2)
13: if 𝑜𝑖 < 0 then return ⊥
14: if

∑
𝑜𝑖 = 1 then return ℎ𝑓𝑖 s.t. 𝑜𝑖 = 0

15: if
∑
𝑜𝑖 = 2 then return 𝑐

A.4 Connectivity Extraction

Algorithm 6 HexHex: Local Connectivity Extraction
1: parallel for each generator 𝑔 ∈ G \ (𝐶T ∪ 𝜕𝐹T) do
2: pick any hex-vertex 𝑣 ∈ 𝑉H with generator 𝑔
3: //Propeller extraction
4: for 𝑐 ∈ 𝐶T incident to 𝑔 do
5: for 𝑑 ∈ D do
6: if (𝜌 ← Holder(𝑔, 𝒇 𝑐 (𝑣), 𝑑, 𝑐)) ≠ ⊥ and ParentTet(𝜌) = 𝑐 then
7: 𝑝 ← new local propeller with holder 𝜌 and direction 𝑑𝑐 (𝑝) = 𝑑

8: P𝑙 (𝑔)+ = 𝑝

9: //Blade enumeration
10: for 𝑝 ∈ P𝑙 (𝑔) with holder ℎ do
11: dirs2blades[𝑝] ← []
12: for 𝑐 ∈ 𝐶T incident to ℎ in CCW order do
13: 𝑑1 ← 𝑑𝑐 (𝑝)
14: for 𝑑2 ∈ D s.t. 𝑑2 ⊥ 𝑑1 ∧ Casing(ℎ, 𝒇 𝑐 (𝑣), 𝑑1, 𝑑2, 𝑐) ≠ ⊥ in CCW order do
15: if ParentTet(𝜁) = 𝑐 then
16: dirs2blades[𝑝] ← dirs2blades[𝑝] + (𝑐,𝑑2)
17:
18: for 𝑝 ∈ P𝑙 (𝑔) with holder ℎ do
19: for 𝑖 = 0, 1, ... |dirs2blades[𝑝] | − 1 do
20: if blades[𝑝] [𝑖] is valid then
21: continue
22: 𝑐,𝑑2 ← dirs2blades[𝑝] [𝑖]
23: 𝑑1 ← 𝑑𝑐 (𝑝)
24: (𝑐, 𝑓)𝑒𝑥𝑖𝑡 ← (𝑐,⊥)
25: 𝑧 ← 𝒇 𝑐 (𝑣)
26: while (𝑝′ ← propeller in P𝑙 (𝑔) s.t. 𝑑𝑐 (𝑝′) = 𝑑2) is not valid do
27: (𝑐, 𝑓)𝑒𝑥𝑖𝑡 ← PickNextHalffaceToBlade((𝑐, 𝑓)𝑒𝑥𝑖𝑡 , 𝑧, 𝑑1, 𝑑2)
28: 𝑧,𝑑1, 𝑑2 ← 𝜏 (𝑐,𝑓)𝑒𝑥𝑖𝑡 (𝑧,𝑑1, 𝑑2)
29: (𝑐, 𝑓)𝑒𝑥𝑖𝑡 ← opposite halfface of (𝑐, 𝑓)𝑒𝑥𝑖𝑡
30: blades[𝑝] [𝑖] ← 𝑝′

31: 𝑗 ← index s.t. dirs2blades[𝑝′] [𝑗] = (𝑐,𝑑1)
32: blades[𝑝′] [𝑗] ← 𝑝

33: //Corner enumeration
34: for 𝑝 ∈ P𝑙 (𝑔) with holder ℎ do
35: for 𝑖 = 0, ..., len(blades[𝑝]) − 2 do
36: 𝐶𝑙 (𝑔)+ = (𝑝, blades[𝑝] [𝑖], blades[𝑝] [𝑖 + 1])
37: if ℎ ∉ 𝜕T then
38: 𝐶𝑙 (𝑔)+ = (𝑝, blades[𝑝] [0], blades[𝑝] [len(blades[𝑝]) − 1])
39:

The local connectivity extraction as explained in Section 5.3 is
provided in Algorithm 6 in its three parts: Propeller extraction,
blade connections, and corner enumeration. In the blade connection
part, it is crucial that the blades around a propeller are consistently
ordered counterclockwise. We first enumerate the directions to the
blades before rotationally tracing to them, so we do not connect the
same pair twice.

20 • Kohler et al.

The rotational tracing from a local propeller to one of its blades,
provided the starting tet and directions in this chart, requires the
function pickNextHalffaceToBlade which determines which ad-
jacent tet should be traced into in case the blade does have no image
in the current one. The algorithm considers the cases in Figure 13
and is provided in Algorithm 7.

Algorithm 7 PickNextHalffaceToBlade

Input
𝑝 propeller on generator 𝑔
(𝑓 , 𝑐) entering halfface. Invalid or incident to 𝑔 and 𝑐
𝑐 current cell chart
𝑑1, 𝑑2 propeller root and blade directions in the chart of 𝑐

Output
(𝑓 ′, 𝑐) exiting halfface incident to 𝑐 and not equal to (𝑓 , 𝑐) which is intersected by the

integer-grid face
1: if 𝑔 ∈ 𝐹 then //Face-cell-propeller
2: return (𝑔, 𝑐) //(FC): only one option
3: inFirstCell← (𝑓 , 𝑐) is invalid //still in starting chart?
4: if 𝑔 ∈ 𝐸 then
5: if ¬inFirstCell then //Edge-generator, not inFirstCell
6: return unique (𝑓 ′, 𝑐) s.t. 𝑓 ′ ≠ 𝑓 , 𝑔 ∼ 𝑓 ′ //only one option
7: if holder[𝑝] ∈ 𝐹 then //Edge-face-propeller, inFirstCell
8: return unique (𝑓 ′, 𝑐) s.t. 𝑓 ′ ≠ holder[𝑝], 𝑔 ∼ 𝑓 ′ //(EF): only one option
9: 𝑧 ← 𝒇 𝑐 (𝑣ℎ) //𝑣ℎ can be any hex-vertex with generator 𝑔
10: for (𝑓 ′, 𝑐) ∼ 𝑐 s.t. 𝑓 ′ ≠ 𝑓 and 𝑔 ∼ 𝑓 ′ do
11: if 𝑔 ∈ 𝐸 then //(EC): Edge-cell-propeller, inFirstCell
12: 𝑢, 𝑣, 𝑤 ← 𝒇 𝑐 ((𝑓 ′, 𝑐)) ordered s.t. 𝒇 𝑐 (𝑔) = {𝑢, 𝑣} //halfface parameters
13: ori𝑑2 ← ORI3D(𝑢, 𝑣, 𝑧 + 𝑑1, 𝑧 + 𝑑2)
14: if ori𝑑2 = 0 then //face cuts through generator edge
15: return (𝑓 ′, 𝑐) //both faces incident to 𝑔 would be ok
16: ori𝑤 ← ORI3D(𝑢, 𝑣, 𝑧 + 𝑑1, 𝑤)
17: if ori𝑑2 = ori𝑤 then //face lies on correct side, see (EC)
18: return (𝑓 ′, 𝑐)
19: else //(V): Vertex-generator
20: 𝑢, 𝑣, 𝑤 ← 𝒇 𝑐 ((𝑓 ′, 𝑐)) ordered s.t. 𝒇 𝑐 (𝑔) = 𝑢 //halfface parameters
21: ori1 ← ORI3D(𝑢, 𝑣,𝑢 + 𝑑1,𝑢 + 𝑑2)
22: ori2 ← ORI3D(𝑤,𝑢,𝑢 + 𝑑1,𝑢 + 𝑑2)
23: if ori1 = ori2 then //Rotation goes through inner part of face triangle
24: return (𝑓 ′, 𝑐) //(both oris must be < 0)
25: if (ori1 = 0 and ori2 < 0) or (ori1 < 0 and ori2 = 0) then//Rotation goes through edge

𝑢𝑣 or𝑢𝑤
26: return (𝑓 ′, 𝑐)

The tracing from a global propeller to one of its opposites, pro-
vided the starting tet and parameter, the primary direction of the
propeller and the secondary direction of one of its blades with a
casing incident to the starting tet, requires the function
PickNextHalffaceToOpposite which determines which adjacent
tet should be traced into in case the opposite vertex is not contained
in the current one. The algorithm considers the cases in Figure 14
and is provided in Algorithm 9.

Algorithm 8 HexHex: Global Connectivity Extraction
1: parallel for each generator 𝑔 ∈ G do
2: for each global propeller (𝑣, 𝑝) ∈ 𝑉H (𝑔) × P𝑙 (𝑔) do
3: if opposite[𝑣, 𝑝] is valid then
4: continue
5: 𝑧 ← 𝒇 𝑐 (𝑣)
6: 𝑐,𝑑2 ← dirs2blades[𝑝] [0]
7: 𝑑1 ← 𝑑𝑐 (𝑝)
8: (𝑐, 𝑓)𝑒𝑥𝑖𝑡 ← (𝑐, 𝜖)
9: while 𝑣′ ← hex-vertex with 𝒇 𝑐 (𝑣′) = 𝑧 + 𝑑1 is not valid do
10: (𝑐, 𝑓)𝑒𝑥𝑖𝑡 ← PickNextHalffaceToOpposite((𝑐, 𝑓)𝑒𝑥𝑖𝑡 , 𝑧, 𝑑1, 𝑑2)
11: 𝑧,𝑑1, 𝑑2 ← 𝜏 (𝑓 ,𝑐)𝑒𝑥𝑖𝑡 (𝑧,𝑑1, 𝑑2)
12: (𝑐, 𝑓)𝑒𝑥𝑖𝑡 ← opposite halfface of (𝑐, 𝑓)𝑒𝑥𝑖𝑡
13: 𝑝′ ← propeller with 𝑑𝑐 (𝑝′) = −𝑑1
14: 𝑗 ← index s.t. dirs2blades[𝑝′] [𝑗] = (𝑐,𝑑2)
15: opposite[𝑣, 𝑝] ← (𝑣′, 𝑝′)
16: opposite[𝑣′, 𝑝′] ← (𝑣, 𝑝)
17: connectionOffset[𝑣, 𝑝] ← connectionOffset[𝑣′, 𝑝′] ← 𝑗

18:

Algorithm 9 PickNextHalffaceToOpposite

Input
(𝑓 , 𝑐) entering halfface. Invalid or incident to 𝑐
𝑐 current cell chart
𝑧 hex-vertex parameter in the chart of 𝑐
𝑑1, 𝑑2 propeller root and blade directions in the chart of 𝑐

Output
(𝑓 ′, 𝑐) exiting halfface incident to 𝑐 and not equal to (𝑓 , 𝑐) which is intersected by the

integer-grid edge and by the integer-grid face
1: for (𝑓 ′, 𝑐) ∼ 𝑐 s.t. 𝑓 ′ ≠ 𝑓 do
2: 𝑢, 𝑣, 𝑤 ← 𝒇 𝑐 ((𝑓 ′, 𝑐))
3: if ORI3D(𝑢, 𝑣, 𝑤, 𝑧) ≤ 0 or ORI3D(𝑢, 𝑣, 𝑤, 𝑧 + 𝑑1) ≥ 0 then
4: continue //Root does not even cut through the face plane
5: ori𝑢𝑣 ← ORI3D(𝑢, 𝑣, 𝑧, 𝑧 + 𝑑1) //get the orientations of the three
6: ori𝑣𝑤 ← ORI3D(𝑣, 𝑤, 𝑧, 𝑧 + 𝑑1) //tets formed around 𝑧, 𝑧 + 𝑑1
7: ori𝑤𝑢 ← ORI3D(𝑤,𝑢, 𝑧, 𝑧 + 𝑑1)
8: if ori𝑢𝑣 = ori𝑣𝑤 = ori𝑤𝑢 then //all oris are < 0
9: return (𝑓 ′, 𝑐) //(1): Root does cut through inner part of face triangle
10: if any of these three oris is positive and any of them is negative then
11: continue //Root does not cut through the face triangle
12: //Otherwise, the root cuts through the triangles boundary (edge or vertex)
13: 𝑛 ← (ori𝑢𝑣 = 0) + (ori𝑣𝑤 = 0) + (ori𝑤𝑢 = 0) //Get number of edge intersections. 1 or 2
14: if 𝑛 = 1 then //cuts through edge
15: cycle𝑢, 𝑣, 𝑤 s.t. ori𝑢𝑣 = 0 //𝑢, 𝑣 is intersected edge
16: ori← ORI3D(𝑢, 𝑣, 𝑧 + 𝑑1, 𝑧 + 𝑑2)
17: if ori= 0 then //Integer-grid plane cuts through edge
18: return (𝑓 ′, 𝑐) //(2b): both faces incident to edge would be ok
19: if ori= ORI3D(𝑢, 𝑣, 𝑧 + 𝑑1, 𝑤′) then
20: return (𝑓 ′, 𝑐) //(2a): integer-grid face intersects triangle face
21: else //(2a): integer-grid face intersects other incident triangle face
22: return unique (𝑓 ′′, 𝑐) incident to intersected edge s.t. 𝑓 ′ ≠ 𝑓 ′′

23: else //𝑛 = 2, (3): cuts through vertex
24: cycle𝑢, 𝑣, 𝑤 s.t. ori𝑢𝑣 = ori𝑤𝑢 = 0 //𝑢 is intersected vertex
25: if ORI3D(𝑣,𝑢, 𝑧, 𝑧 + 𝑑2) < 0 or ORI3D(𝑢, 𝑤, 𝑧, 𝑧 + 𝑑2) < 0 then
26: continue //𝑧, 𝑧 + 𝑑2 is not on correct side
27: return (𝑓 ′, 𝑐) //(3a), (3b)

	Abstract
	1 Introduction
	2 Related Work
	3 Terminology
	3.1 Mesh
	3.2 Integer-Grid Map

	4 Data Structures
	4.1 The Darts of HexEx
	4.2 The Propellers of HexHex
	4.3 Properties

	5 Algorithm
	5.1 Preprocessing
	5.2 Vertex Extraction
	5.3 Local Connectivity Extraction
	5.4 Global Connectivity Extraction
	5.5 Piecewise-Linear Edge Arcs and Face Patches
	5.6 Runtime Analysis

	6 Results
	6.1 Runtimes
	6.2 Experiments
	6.3 Memory

	7 Conclusion and Future Work
	Acknowledgments
	References
	A Exact Predicates
	A.1 Generator
	A.2 Holder
	A.3 Casing
	A.4 Connectivity Extraction

