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Figure 1: Three example models of HexMe (https://hexme.algohex.eu): The tetrahedral meshes faithfully represent feature points, curves

(depicted in blue), and surfaces of the underlying CAD primitives.

Abstract

HexMe consists of 189 tetrahedral meshes with tagged features and a workflow to generate them. The primary purpose of HexMe

meshes is to enable consistent and practically meaningful evaluation of hexahedral meshing algorithms and related techniques,

specifically regarding the correct meshing of specified feature points, curves, and surfaces. The tetrahedral meshes have been

generated with Gmsh, starting from 63 computer-aided design (CAD) models from various databases. To highlight and label the

diverse and challenging aspects of hexahedral mesh generation, the CAD models are classified into three categories: simple,

nasty, and industrial. For each CAD model, we provide three kinds of tetrahedral meshes (uniform, curvature-adapted, and

box-embedded). The mesh generation pipeline is defined with the help of Snakemake, a modern workflow management system,

which allows us to specify a fully automated, extensible, and sustainable workflow. It is possible to download the whole dataset

or select individual meshes by browsing the online catalog. The HexMe dataset is built with evolution in mind and prepared for

future developments. A public GitHub repository hosts the HexMe workflow, where external contributions and future releases

are possible and encouraged. We demonstrate the value of HexMe by exploring the robustness limitations of state-of-the-art

frame-field-based hexahedral meshing algorithm. Only for 19 of 189 tagged tetrahedral inputs all feature entities are meshed

correctly, while the average success rates are 70.9% / 48.5% / 34.6% for feature points/curves/surfaces.

CCS Concepts

• General and reference → Evaluation; • Computing methodologies → Mesh geometry models; • Information systems →

Test collections;

1. Introduction

In the last decades, the meshing community has been actively work-
ing on developing algorithms and tools, in order to implement a
robust and automatic hexahedral mesher, c.f. Figure 2. Although
numerous attemps have been conducted, there is still no satisfac-
tory solution up to this day. In fact, there is still no automatic

method robustly generating high-quality hexahedral meshes for

general shapes. Industrial methods manage to provide high-quality
meshes, but they typically involve tedious and lengthy user inter-
ventions. Automatic methods such as advancing front [BRM∗14]
and polycube-based [CAS∗19] approaches are neither guaranteed
to be robust, nor assured to build high-quality hexahedra. Solely,
octree-based procedures [GSP19] can automatically and robustly
supply a full hexahedral mesh, but with a quality far from ideal
close to features (points/curves/surfaces). Three-dimensional octa-
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Figure 2: Yearly number of publications related to hexahedral

meshing. Source: app.dimension.ai (criteria: hexahedral mesh, in title and abstract)

hedral frame-based methods are a promising candidate to automat-
ically generate high-quality meshes. However, they are lacking ro-
bustness due to non-meshable frame-field topology [LZC∗18], and
other robustness issues in the generation of volumetric integer-grid
maps [PCS∗22].

Recently, [BTP∗19] has introduced HexaLab to the meshing
community. HexaLab is a visualization tool enabling the evalua-
tion of hexahedral meshes by filtering elements and showing var-
ious quality metrics (corner scaled Jacobian, edge ratio, etc.). In
addition, HexaLab collects the ouput hexahedral meshes of various
state-of-the-art methods. However, there is no common dataset of
input models, complicating the comparison of different methods.

Most of the algorithms tackling the hex meshing challenge use
tetrahedral meshes as input or during some intermediate steps.
However, there is no suitable tetrahedral dataset for objective anal-
ysis and meaningful comparison of hexahedral mesh generators.
Our goal is to provide such a dataset to reveal common robustness
issues and guide future research toward practical relevance.

The result of our endeavour is the HexMe dataset, a collection of
tetrahedral meshes with tagged feature entities. The feature entities
are special points, curves and/or surfaces, which need to be accu-
rately captured by a hexahedral mesh, c.f. Fig.3. Please note that
such feature points/curves/surfaces are common in all mesh genera-
tion scenarios, where they impose corresponding constraints on the
local structure of the desired mesh. All meshes have been generated
from computer-aided design (CAD) models, following a workflow
defined with Snakemake [MJL∗21], using the Gmsh [GR09] API
with custom parameters defined in yaml metadata files. CAD mod-
els are classified into three categories (simple, nasty, industrial),
in order to grade their difficulty and consistency. For each model,
three meshes are provided: two resolutions (curvature-adapted, uni-
form) to analyze the mesh dependency of algorithms, and an em-
bedding of the object into a box resulting in interior feature struc-
tures. The meshes including the feature tags are exported as .vtk

datafiles (version 2, ASCII mode), a mesh format which is broadly
used and easily accessible.

HexMe and HexaLab share the goal of guiding future research
on hexahedral meshing algorithms – HexMe through a suitable
dataset of input models, HexaLab through the analysis and com-
parison of output hexahedral meshes.

The HexMe dataset has been designed to meet the following
goals:

(G0) Unambiguous & Ready-to-use – The dataset offers volu-
metric tetrahedral meshes, ready to be used by any method
relying on a tet mesh. Different methods can be compared
without any bias introduced by ambiguous conversion proce-
dures as for instance from surface or CAD representations.

(G1) Challenging – The dataset specifically includes nasty geo-
metric configurations that are often avoided, as well as real-
world industrial models containing an assembly of such dif-
ficulties.

(G2) Discriminative – The dataset allows to diagnose and grade
the limitations of hexahedral algorithms. There are simple

models enabling a sanity check, whereas each nasty model
is designed to reveal robustness w.r.t. a specific type of dif-
ficulty. The tessellation dependence of a method is evaluated
by including two different tetrahedral meshes for each model.

(G3) Realistic – The dataset mimics the workflow of a numerical
practitioner, where all feature entities have to be preserved
through all stages of the mesh generation pipeline. Explic-
itly defining such constraints is essential for comparison of
methods since often it is possible to significantly improve the
mesh quality or simplify the meshing task by violating some
feature constraints. Consequently, output statistics are only
comparable and meaningful if identical constraints have been
enforced in the mesh generation.

(G4) General – So far, most hex meshing methods have been eval-
uated only on individual objects with a single boundary. This
is only a special case of the more challenging general vol-
umetric meshing problem with arbitrary interior structures
that arise for instance when simulating multi-material scenar-
ios like fluid-structure interaction. Consequently, we include
general test cases with interior feature constraints by embed-
ding CAD models in a bounding box.

(G5) Sustainable – We intentionally limit the number of models
to restrict the evaluation to challenging and meaningful ge-
ometries. This is important since hex meshing algorithm of-
ten include costly mixed-integer optimization and evaluating
with thousands or millions of complex inputs is computation-
ally infeasible. Moreover, the workflow has been designed in
a sustainable manner, such that changes of the workflow re-
quire solely the regeneration of the affected models (Snake-
make cache).

(G6) Mutable – Simultaneously to the algorithms, the set of chal-
lenging and meaningful geometries will change over time.
HexMe is designed in a way that new models and even mesh-
ing definitions can be added conveniently (Snakemake work-
flow available on a public GitHub). We envision that the en-
tire mesh generation community will actively contribute to
future versions of HexMe.
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Dataset Database Mesher
Mesh

Tri / Tet
Format

Features
0D|1D|2D|3D

Interface

Thingi10k Thingiverse - Tri .stl ×|×| |× query engine

TetWild Thingi10k TetWild Tet .msh2 ×|×|×|× Google drive

ABC Onshape Gmsh Tri .obj ×| | |× chunks

SimJEB GrabCAD HyperMesh© Tet .vtk ×|×|×|× webpage

[GSP19]
[FBL16]

Drexel cad repository
- Tri .obj | | | × .zip

HexMe

ABC
GrabCAD
MAMBO
(crafted)

Gmsh Tet .vtk | | | web catalog

Table 1: Summary of datasets related to HexMe.

In the following, we first describe in Section 2 datasets related
to HexMe and discuss their differences. Afterwards, Section 3 in-
troduces the pipeline to produce the tetrahedral meshes from CAD
models, and Section 4 summarizes the content of HexMe. Finally,
in Section 5, a state-of-the-art frame-field-based hexahedral mesh-
ing pipeline is applied to the dataset to verify that HexMe is suitable
to benchmark robustness of hex meshing algorithms.

2. Related Datatsets

There is a shift among the scientific community. Open science that
is readily reproducible and shared is becoming popular. Among
other things, this is mainly possible thanks to the free access to
datasets supporting this open research. Consequently, an increased
number of datasets has been published recently, where in the area
of computer graphics ShapeNet [CFG∗15], ModelNet [WSK∗15],
and Fusion360 [WPL∗21] are popular resources. In the following,
we present the five datasets in more detail that are most related to
HexMe and discuss their similarities and differences.

Tetwild Even though Tetwild [HZG∗18] is a tetrahedral meshing
technique, it is also a tetrahedral dataset, since the authors provide
the output of their algorithm applied to Thingi10k [ZJ16], a tri-
angular dataset. This tetrahedral dataset is the tetrahedrization of
ten thousand models from Thingi10k. The tetrahedral meshes are
msh2 binary files, with a scalar per tetrahedron exposing the min-
imal dihedral angle. The 10k meshes are stored on Google Drive,
within an archive tar.gz (∼9.5GB).

ABC The ABC [KMJ∗19] dataset is a collection of one million
computer-aided design models for geometric deep learning. All
CAD files are from Onshape, and the original information related to
those models is recorded within a metadata file meta.yml. Some
processing tasks are done in order to filter the duplicate and bro-
ken models. The filtered models para.zip are afterwards con-
verted into .step and .stl files using Parasolid. Gmsh [GR09]

is then used to provide either uniform or curvature-adapted triangu-
lar meshes, which are exported as .obj meshes from the .step
files. Differential quantities are stored in those .obj files, while
the vertices and triangles of the mesh are respectively matched
to the feature curves and patches, through another metadata file
feat.yml. Further files may be provided, depending on the success
of the processing. The dataset is downloadable by chunks contain-
ing 7z archives of above files.

Thingi10k Historically, Thingi10k [ZJ16] is the first dataset pro-
viding ten thousand diverse, complex and quality .stl triangula-
tions of 3D (printing) models. All models come from Thingiverse,
and have been selected only if they were tagged featured by the
Thingiverse staff. An online query interface is provided, which re-
turns all the contextual and original information related to a .stl
triangulation. It is also possible to download the whole dataset as
an archive tar.gz from Google Drive (∼9GB).

SimJEB The recent SimJEB [WBM21] dataset provides 381 tetra-
hedral meshes from CAD models, by following a semi-automated

pipeline. The CAD models come from a challenge organized by
GrabCAD. Those former 700 models have been filtered (mostly
based on the filename), manually repaired, and then meshed us-
ing the commercial software HyperMesh. A structural simulation
was performed using the commercial software OptiStruct. The 381
.vtk tetrahedral meshes surviving this pipeline are hosted through
the Harvard Dataverse (∼1.6GB), along with the corresponding
clean CAD .stp file, triangular surface .obj meshes, finite ele-
ment .fem models, and simulation .csv results. The final models
are identified by an integer, specified by readme files. A web page
allows to browse the designs, and to explore the data.

[GSP19] Recent grid-based hexahedral meshing papers [GLYL20,
PLC∗21, LPC21] have benchmarked their method on a common
dataset gathered by [GSP19]. This dataset consists of 202 .obj tri-
angular meshes from [FBL16] and Drexel CAD repository (2018),
109 of them are equipped with feature curves. The feature curves
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Simple Nasty Industrial

Figure 3: HexMe uses three categories of CAD models: simple, nasty and industrial.

have been extracted using a dihedral angle of 140 degrees in combi-
nation with manual adjustment. A .fgraph file specifies the set of
feature edges but without grouping them semantically into feature
curves. The 202 triangular meshes with the 109 feature annotations
are available as a supplementary .zip file (∼1.4GB).

The available datasets differ by (i) their selection of models, (ii)
whether triangular or tetrahedral meshes are supplied, (iii) poten-
tial specification of feature entities (0D/1D/2D/3D), and (iv) their
infrastucture to access models and to potentially contribute new
models. Table 1 summarizes the comparison between HexMe and
the related datasets. Please note that for datasets solely providing
triangular surface meshes, we interpret these as a 2D feature speci-
fication, even if no explicit tags are available.

SimJEB is by-design the closest dataset to HexMe: small number
of tetrahedral meshes from CAD models, semi-automated meshing
pipeline, web catalog and .vtk mesh format. However, all Sim-
JEB geometries describe a jet engine bracket, while HexMe sup-
plies more diverse and challenging types of geometries. ABC is the
only related dataset providing meshes with feature tags correspond-
ing to the CAD geometry. However, the ABC dataset consists only
of triangular surface meshes and does not define any volumetric
discretization. The dataset of [GSP19] supplies 109 triangular sur-
face meshes with annotated feature points and curves. But neither
tetrahedral meshes, nor tags relating feature entities to the corre-
sponding CAD primitives, or a sustainable and extensible workflow
are available. The Thingi10k and Tetwild meshes have not been
generated from CAD files and thus do not specify feature entities.

3. From CAD to Tets

All the tetrahedral meshes provided by HexMe have been produced
from three categories of CAD models, Figure 3:

• simple models: basic shapes that are assumed to be easily hex-
meshable, i.e. the target hexahedral topology is fair, e.g., a
cube (s01o_cube.geo), or a cut hemisphere on a cylinder
(s10o_cyl_cutsphere.stp).

• nasty models: academic shapes that are challenging to hex-mesh,
e.g., a pyramid [VPR19] (n09o_pyramid.geo), or a ski jump
(n02o_skijump_anti_box_cyl.geo).

• industrial models: lifelike shapes, which hexahedrization is
highly valuable for numerical simulation, e.g., a truck tire
(i28o_gc_tire_1218.step from GrabCAD), or an air-
craft for CFD (i31o_dlr_f6.brep [VTM∗08, BERF08]).

The 63 CAD models have been selected to cover known con-
figurations that are challenging for current hexahedral meshing al-
gorithms. In the future, the dataset will evolve together with the
algorithms with the goal of providing a minimal set of test cases,
which is maximally meaningful.

In contrast to the comparable datasets (Section 2), the CAD
models come from several databases: ABC dataset (originally
from Onshape), GrabCAD and MAMBO. Some of the CAD
models were created specifically for HexMe, using Gmsh and
Siemens NX software. Those latter models are released to
the public domain, while the other ones are regulated by li-
censes, which are respectively: Onshape Terms 1(g)(i), Grab-
CAD Terms (c.f. related FAQ) and Apache 2.0. The above
information is reported within a metadata file (with the fol-
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Curvature-adapted: i05c_m5.vtk

Uniform: i05u_m5.vtk Box-embedded: i05b_m5.vtk

Figure 4: There are three tetrahedral meshes per CAD model, e.g. i05o_m5.step from MAMBO.

lowing nomenclature (s|n|i)(\d{2})o_{extra}.yaml)
per CAD model with a short description of the shape, e.g.
i28o_gc_tire_1218.yaml:

author: Milos Suvakov, grabcad.com/milos.suvakov

description: tire of a truck

license: GrabCAD Terms

name: i28o_gc_tire_1218

original: original/i28o_gc_tire_1218.step

references: https://grabcad.com/library/tire-12-00-18-1

For each CAD model, three tetrahedral meshes are provided,
c.f. Figure 4:

• curvature-adapted: the mesh element size is adapted to the cur-
vature, and upper bounded such that the CAD geometry is suffi-
ciently preserved (e.g. i05c_m5.vtk).

• uniform: the mesh element size is constant, even in the neighbor-
hood of the tiniest geometrical features (e.g. i05u_m5.vtk).

• box-embedded: the initial model is embedded in a box that is
twice as large as the original bounding box, and the correspond-
ing mesh is generated such that the smallest gap between the box
limits and the initial model is meshed by one layer of tetrahedra
(e.g. i05b_m5.vtk).

The pipeline handling the mesh generation is orchestrated
by Snakemake [MJL∗21], a popular (currently ∼ 7 citations
per week) scalable workflow management system. In a few
words, Snakemake is a modern version of GNU Make, whose
syntax is close to Python. The workflow Snakemesh con-
sists of two rules. The first rule meshes defines which

meshes should be produced. The second rule cad2vtk gen-
erates a mesh from a CAD model and a metadata file
(s|n|i)(\d{2})(c|u|b)_{extra}.yaml containing the
custom mesh options (for curvature-adapted, uniform, or box-
embedded). To do so, this second rule runs a python script us-
ing Gmsh API, with a maximum of 8 threads. For each mesh, a
log file (s|n|i)(\d{2})(c|b|u)_{extra}.txt is written
with the corresponding console output, in order to record the his-
tory of the meshing task.

Snakemake scans the workflow in a backward fashion, meaning
that the input files are determined from the output ones. In other
words, the purpose of the first rule is to state all meshes that should
be produced. Afterwards, the second rule provides those meshes by
identifying the corresponding input files accordingly, which are the
CAD model and the metadata file. This backward identification is
the key of the workflow definition, since the rules are mostly written
with wildcards. The use of Snakemake easily yields a sustainable
dataset, since a rule is applied only if an output is either missing or
older than the corresponding input.

Gmsh [GR09] does not only mesh the volume, but also the fea-
ture entities as defined by the CAD model. In addition to the tetra-
hedral elements, there are triangle, edge and vertex elements (lower
dimensional elements are conforming to the higher ones) to respec-
tively discretize feature surfaces, feature curves and feature points.
Those features are identified by the CAD with a tag (i.e. a positive
integer), which corresponds to a physical group within Gmsh. Do-
ing so, the corresponding mesh elements are created accordingly
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with the inherited CAD tag. Meshes are exported as vtk Datafile
Version 2.0, in ASCII mode. The used Gmsh git-version is writ-
ten within the file header. A mesh is defined as an UNSTRUC-

TURED_GRID, with the four following sections:

1. POINTS: coordinates of every node
2. CELLS: number of nodes and nodal definition of every element

(vertices, edges, triangles and tetrahedra); the second number on
the cell section is the total number of integer values

3. CELL_TYPES: integer corresponding to the element type
{1:vertex, 3:edge, 5:triangle, 10:tetrahedron}

4. CELL_DATA: integer corresponding to the element tag that be-
longs to the CAD feature.

# vtk DataFile Version 2.0

s01o_cube, Created by Gmsh 4.9.3-git-ac3fcda9f

ASCII

DATASET UNSTRUCTURED_GRID

POINTS 273 double

-0.9559524353885869 0.9350753925146784 1.325609826087499

[...]

CELLS 1425 6569

1 0

[...]

CELL_TYPES 1425

1

[...]

CELL_DATA 1425

SCALARS CellEntityIds int 1

LOOKUP_TABLE default

1

[...]

Overall, there are 189 meshes, whose filenames follow the
nomenclature (s|n|i)(\d{2})(c|u|b)_{extra}.vtk,
which summarizes the corresponding model (s|n|i)(\d{2}) and
mesh (c|u|b) types.

4. HexMe Anatomy

The HexMe tetrahedral dataset is downloadable in a single file:
hexme.zip (∼1.5GB). Alternatively, it is possible to download
meshes one-by-one from the catalog (the catalog is mostly gener-
ated by Snakemake, using the report feature) The catalog is split
into three categories (i, n, s), that correspond to the model cat-
egories (respectively: industrial, nasty, simple). Within each cat-
egory, there are three subcategories (b, c, u), that correspond to
the mesh types (respectively: box-embedded, curvature-adapted,
uniform).

An entry of the catalog is described by two pictures (a cut view
and a quality histogram), a .pdf file, a .vtk mesh, the corre-
sponding log file (s|n|i)(\d{2})(c|u|b)_{extra}.txt
and the metadata file (s|n|i)(\d{2})o_{extra}.yaml re-
lated to the CAD model. A summary of the mesh is also avail-
able in a .pdf sheet, Figure 5. The summary provides topological
information about the CAD model (number of points, curves and
surfaces) and the mesh (number of vertices, edges, triangles, tetra-
hedra and nodes). Moreover, two histograms related to the inverse
condition number (ICN) [JGTR16, §2.1] of triangles and tetrahedra
are plotted. Finally, four screenshots (xy-, yz-, zx- and 3D-views) of
the cut mesh are displayed.

On top of HexMe catalog, there is a GitHub page hosting all the

necessary input files to run the workflow. The tetrahedral meshes
are not hosted on this git repository (the git history would be too
heavy otherwise). The main purpose of this git repository is to
expose the workflow that has been used for the mesh generation.
Through this repository, it is possible to report an issue if a mesh
does not meet user expectations. The meshing community is invited
to actively contribute to the HexMe dataset, by creating pull-

requests for proposing new models and/or filtering of existing
ones. There will be releases with appropriate git-tag, whenever
the dataset has been significantly updated.

How to contribute. The workflow supports CAD models with ex-
tensions .geo, .step, .stp, or .brep. For each CAD model,
four metadata files need to be defined. The first one specifies gen-
eral information about the model

# meta/(i|n|s){\d{2}}o_{extra}.yaml

description: ...

license: ...

name: (i|n|s){\d{2}}o_{extra}

original: original/(i|n|s){\d{2}}o_{extra}.(geo|stp|brep|step)

references: ...

The other three files define the desired meshing parameters for
each mesh type (c|u|b), respectively:

# meta/(i|n|s){\d{2}}c_{extra}.yaml

gmsh.option.setNumber:

- Mesh.Algorithm: ...

- Mesh.Algorithm3D: ...

- General.NumThreads: ...

- Mesh.CharacteristicLengthMax: ...

- Mesh.MeshSizeFromCurvature: ...

info: meta/(i|n|s){\d{2}}o_{extra}.yaml

# meta/(i|n|s){\d{2}}u_{extra}.yaml

gmsh.option.setNumber:

- Mesh.Algorithm: ...

- Mesh.Algorithm3D: ...

- General.NumThreads: ...

- Mesh.CharacteristicLengthMin: ...

- Mesh.CharacteristicLengthMax: ...

info: meta/(i|n|s){\d{2}}o_{extra}.yaml

# meta/(i|n|s){\d{2}}b_{extra}.yaml

gmsh.model.mesh.setSize:

- ipts: ...

gmsh.option.setNumber:

- Mesh.Algorithm: ...

- Mesh.Algorithm3D: ...

- General.NumThreads: ...

- Mesh.MeshSizeExtendFromBoundary: ...

- Mesh.MeshSizeFromPoints: ...

- Mesh.MeshSizeFromCurvature: ...

info: meta/(i|n|s){\d{2}}o_{extra}.yaml

The items of the section gmsh.option.setNumber

correspond to the options that Gmsh provides. The items
Mesh.CharacteristicLength* constrain the mesh element
size range. In the case of a uniform mesh, those values are cho-
sen identically. For further details about Gmsh options, we refer
the reader to the corresponding documentation. The info entry
links the mesh metadata to the metadata of the CAD model. Fi-
nally, observe that the box-embedded metadata has a section re-
lated to gmsh.model.mesh.setSize. The value of ipts is
the mesh element size used for the interior of the CAD model (we
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Figure 5: Sheet summarizing i08c_m8.

recommend to use the element size of the uniform meshing case
by default). For such box-embedded meshes, the outer part of the
model is meshed with one layer of tetrahedra in the smallest gap
between the model boundary and the limits of the box.

5. Example Evaluation

To demonstrate the value of HexMe, we challenge a state-of-the-art

pipeline of frame-field based hexahedral meshing with our dataset
and evaluate its robustness. Robustness issues regularly stem from
hard constraints induced by feature points, curves and surfaces.
Consequently, our primary concern here is to quantify how faith-
ful the tagged input features are reproduced in the generated hex-
ahedral meshes. Note that this is a novel way to assess robust-
ness, which is more fine-grained than simply counting passed or

failed per model. It is also more meaningful in our setting than
other straightforward choices (percentage of hexahedral elements,
or distortion of the integer-grid map for instance) where excellent
numbers could be reported despite some feature constraints are vi-
olated.

For the same reason, typical quality metrics (such as the scaled

Jacobian) have been omitted since they are meaningless for state-
of-the-art algorithms, where most of the generated hexahedral
meshes are incomplete. Obtaining a high quality hexahedral mesh
of a subregion is often significantly easier if features are not pre-
served. However, there is no doubt that quality metrics will be im-
portant in the future of HexMe as soon as the robustness of avail-
able algorithms reaches a sufficient level.

The frame-field based hex-meshing pipeline consists of the fol-
lowing steps:

1. Determination of the target edge length h

2. Specification of frame-field alignment constraints.
3. Feature-aligned smooth frame-field generation. [RSL16]
4. Integer-Grid map generation guided by the frame-field. [NRP11]
5. Hexahedral mesh extraction from the IG map. [LBK16]
6. Verification of feature points, curves, and surfaces.

While upon success the above algorithm delivers promis-
ing hexmesh quality, it can neither guarantee a valid integer-
grid map, nor a valid hexahedral mesh. Failures are caused by
(i) non-meshable frame-field topologies, (ii) non-robust integer-
quantization, or (iii) the inability to guarantee local injectivity
for volumetric maps, see [PCS∗22] for more details. Since all
of the above defects are frequently triggered by feature con-
straints, HexMe is well-suited to quantify the lack of robustness
of the candidate pipeline. Please note that we did not include sin-
gularity repair strategies based on collapses [LLX∗12] or splits
[JHW∗14], since their repair capabilites are comparable to what
HexEx [LBK16] is able to handle throughout the extraction step.
The above hex-meshing pipeline is released as an open-source C++
library to enable reproduction and ease comparison for future re-
search.

Before presenting and discussing the results of our evaluation,
we describe in more detail the choice of the target edge length (Step
1), frame-field alignment constraints (Step 2), and the verification
of feature entities (Step 6). The verification of represented features
requires special attention since the integer-grid map might contain
degeneracies that are repaired by HexEx but prevent a trivial trans-
fer of feature tags from the tetrahedral to the hexahedral mesh.

Target Edge Length. We determine the target edge length h of the
hexahedral mesh such that n hexahedra are generated. Considering

that the volume of the unit cube is one, we obtain h =

�

V
n

�1/3
,

with V being the volume of the input tetrahedral mesh. For all our
experiments we choose n = 50k.

Frame-Field Alignment Constraints. Frame-fields can be seen
as a continuous relaxation of an integer-grid map, cf. [PCS∗22]. A
frame exhibits the same symmetries as a cube and therefore repre-
sents the local rotation of a cube. Consequently, we require that the
frames align tangentially to all feature curves and feature surfaces.
In a HexMe tet mesh, a feature curve is represented by a 1-manifold
chain of edges. For each of the interior vertices along such a chain,
we estimate a tangent vector by averaging the two incident edges
and then use it as an alignment constraint for the frame-field. Sim-
ilarly, a feature surface is represented by a 2-manifold subset of
triangles and we compute (area-weighted) vertex normals that are
also used as alignment constraints.
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(a) (b) (c) (d)

Figure 6: Feature matching process: feature points (a), feature curves (b), feature patches (c), and the final result (d).

Verification of Feature Points. For each feature point of the input
tet mesh, we search the closest vertex in the hex mesh. If the dis-
tance is below τ = h, the feature point is counted as correctly repro-
duced, otherwise as invalid, as illustrated in Fig. 6 (a). Please note
that we do not require higher-accuracy geometric re-produciton of
features but merely want to assess whether the connectivity of the
hex mesh is able to represent the feature.

Verification of Feature Curves. In HexMe, a feature curve al-
ways contains a feature point. Consequently, we can verify feature
curves by a greedy path search from a source feature vertex to a
target feature vertex in the hexahedral mesh. At the source vertex
we begin with the edge most parallel to the feature curve tangent
at the corresponding point in the tetrahedral mesh. Then we extend
the path through subsequent vertices by always following the next
edge, which is most parallel to the previous one, as illustrated in
Fig. 6 (b). This simple geometric heuristic is motivated by the fact
that feature curves represent smooth 1-manifolds, and turned out
to be reliable in our experiments. A feature curve is successfully
verified if the path reaches the target vertex, while all intermediate
points have a distance below τ. In all other cases, we classify the
feature curve as not being reproduced correctly. Please note that
whenever the source or target feature point are not verified in the
previous stage, the feature curve verification will automatically fail.

Verification of Feature Surfaces. For verification of feature sur-
faces we use a geometrically guided strategy similar to the one
for feature curves. Starting from a seed quadrilateral, we grow the
surface in a breadth-first manner to neighboring elements based
on normal similarity, as illustrated in Fig. 6 (c). We ensure 2-
manifoldness by disallowing growth that would result in more than
2 incident quadrilaterals at one edges. The growth procedure ter-
minates when newly added elements reach a distance above τ to
the input feature surface, or when it encounters edges belonging
to feature curves. The resulting surface is correctly reproduced if
its boundary feature curves coincide with those specified in the in-
put tetrahedral mesh. Again, a feature surface can only be correctly
reproduced, if all its incident feature curves are already correctly
reproduced.

Results and Discussion. We run the hexahedral mesh generation
pipeline on all HexMe models and count the percentages of cor-
rectly reproduced feature points, curves, and surfaces. A table of
full statistics can be found in the supplement. Only for 19 out
of 189 models all feature entities are reproduced correctly, while
the average success rates are 70.9% / 48.5% / 34.6% for feature
points/curves/surfaces.

Figure 7 (a) shows the cumulative percentage of simple/nasty/in-
dustrial models where at least a certain percentage of feature
points/curves/surfaces in the tetrahedral mesh (of any type, box-
embedded/curvature-adapted/uniform) are present in the corre-
sponding hexahedral mesh. As expected, the hexahedral pipeline is
performing the best on the category of simple models. Around 50%
of the hexahedral meshes preserve at least 100% / 86% / 63% of
the feature points/curves/surfaces of the input tetrahedral meshes.
For the meshes of the nasty models, those figures drop to
100% / 34% / 1%, while for the meshes of the industrial models
they are only 78% / 32% / 8%.

Figure 7 (b) provides similar information, but for the curvature-
adapted, uniform and box-embedded meshes of all models. In the
case of the box-embedded meshes, the feature verification does
not count the features corresponding to the box (8 points, 12
curves, 6 surfaces), since those features are trivially recovered. The
hexahedral pipeline performs better for uniform meshes than for
curvature-adapted. While integer-grid map based approaches do
not necessarily require a dense tetrahedral mesh in their domain,
they explicitly require mesh vertices and edges to represent sin-
gularities. Locally inadequately coarse meshes can therefore lead
to collapses in the singularity structure that induce global non-
meshability and consequently worsen feature reproduction. The in-
ner features of the box-embedded meshes are clearly more chal-
lenging to preserve compared to the uniform and curvature-adapted
meshes.

Figure 8 visualizes five representative examples of HexMe tet
meshes and their corresponding generated hex meshes. Feature
points, curves and surfaces are color-coded in the tet meshes. The
corresponding feature entities in the hexahedral mesh are only
color-coded if reproduced correctly. Here we solely provide general
statistics and some qualitative examples. A complete enumeration
and categorization of defects are out of the scope of this evaluation
but will be an important task for future work.

6. Conclusion

The contributions of HexMe are twofold. On the one hand, it is
a tetrahedral dataset with tagged feature entities and on the other
hand, it is a transparent workflow. The main objective of HexMe
is to provide tetrahedral meshes for the meaningful assessment
of hexahedral meshers and associated auxiliary tools such as 3D
frame-fields. In the future, the choice of meshes will evolve to-
gether with the progress of hexahedral meshing techniques. There-
fore, we publish the full workflow to ensure that the HexMe dataset
can be updated easily and does not become outdated in the future.
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(a)

Simple models Nasty models Industrial models

(b)

Curvature-adapted meshes Uniform meshes Box-embedded meshes

Figure 7: Cumulative histograms of the percentage of (a) models and (b) meshes, in respect to the percentage of tetrahedral features that are

recovered in the hexahedral meshes. Observe that in the case of the box-embedded mesh type, the features of the embedding box (8 points,

12 curves and 6 surfaces) are discarded.

The selected 63 CAD models come from several databases. Their
origin and license are recorded within a metadata file. There are
three categories of CAD models, and three types of meshes per
CAD model. The 189 meshes are produced thanks to a workflow
that is defined with Snakemake. The CAD features are reproduced
by Gmsh as lower dimensional elements (vertices, edges, trian-
gles), with corresponding tags. The meshes are expressed as .vtk
Datafile Version 2.0 in ASCII mode.

There are two ways to access the HexMe tetrahedral meshes –
either by downloading all of them in a 1.5GB .zip file, or by pick-
ing individual ones from the catalog. In addition to the meshes and
log files, the catalog yields the metadata related to the CAD model,
a summary about the mesh, and information related to the work-
flow. The files that are involved in the workflow, are available on
a GitHub repository. From this git repository, it is possible to raise
issues and/or pull requests to improve the dataset or the workflow.

The commit corresponding to the version used for this paper has
been tagged HexMe-1.0. The dataset has been uploaded to Zen-
odo, and can be referenced with the following doi 10.5281/zen-
odo.6642020. Whenever a new release occurs, those version tags
will be updated accordingly. Those taggings are crucial in order to
keep track of the assessment of hexahedral methods.
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