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Fig. 1. Our method generates a bijective map of a ball-topology tetrahedral mesh (a) to a star-shaped domain, e.g. a ball (b). Starting with all interior vertices
clustered inside the domain’s kernel (b), we iteratively split clusters by picking a subset of vertices whose 1-ring neighborhood union has a non-empty kernel.
By moving this subcluster into this kernel, some initially degenerate tetrahedra are expanded (c), without degenerating or inverting others. Repeating this
until no cluster remains, all tetrahedron images obtain positive volume, yielding a bijective map (d). Mesh refinement is applied adaptively in the process to
obtain the necessary degrees of freedom. A key invariant is that the intermediate maps never invert any tetrahedron.

Volumetric mapping is a ubiquitous and difficult problem in Geometry Pro-

cessing and has been the subject of research in numerous and various direc-

tions. While several methods show encouraging results, the field still lacks a

general approach with guarantees regarding map bijectivity. Through this

work, we aim at opening the door to a new family of methods by providing

a novel framework based on the concept of progressive expansion. Starting
from an initial map of a tetrahedral mesh whose image may contain degen-

eracies but no inversions, we incrementally adjust vertex images to expand

degenerate elements. By restricting movement to so-called expansion cones,
it is done in such a way that the number of degenerate elements decreases

in a strictly monotonic manner, without ever introducing any inversion.

Adaptive local refinement of the mesh is performed to facilitate this process.

We describe a prototype algorithm in the realm of this framework for the

computation of maps from ball-topology tetrahedral meshes to convex or

star-shaped domains. This algorithm is evaluated and compared to state-of-

the-art methods, demonstrating its benefits in terms of bijectivity. We also

discuss the associated cost in terms of sometimes significant mesh refine-

ment to obtain the necessary degrees of freedom required for establishing a

valid mapping. Our conclusions include that while this algorithm is only of

limited immediate practical utility due to efficiency concerns, the general

framework has the potential to inspire a range of novel methods improving

on the efficiency aspect.
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1 INTRODUCTION
In discrete Geometry Processing, a fundamental problem is finding

a continuous map between two objects. Most relevant are home-

omorphic maps, which in addition are bijective, as is important,

e.g., in the context of parametrization, mesh generation, or defor-

mation. We consider here the problem of constructing such maps,

from three-dimensional volumetric objects onto a certain class of

three-dimensional domains. The object is assumed to be represented

discretely by a tetrahedral mesh, and the map shall be piecewise

linear (PL). In this setting, bijectivity implies that no mesh element

is degenerated or inverted by the map.

While for the analogous 2D case, with trianglemeshes in the plane

or on surfaces, finding bijective maps is a well-documented problem

with multiple solutions, it remains a challenge with only partial

or limited solutions for 3D volumetric meshes. Among the various

reasons for the increased intricacy of the problem in 3D is the higher

relevance of the spatial discretization, the mesh structure. It is easy

to generate examples of meshes that cannot be mapped bijectively

into a desired shape (even if very simple, e.g. convex) with a PL map.

This suggests that mesh structure modifications are important when

the focus is on bijectivity. Hence, more precisely, we consider the
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Fig. 2. 2D example of a mesh 𝑀 and a given map 𝜙0 mapping boundary
vertices (left) to desired positions (right), for which no bijective PL map
for the interior exists. With an additional refinement map 𝜓 , refining 𝑀

through edges splits into𝑀′, we can find a bijective PL map 𝜙 satisfying
the boundary conditions 𝜙0. While in this 2D illustration the necessity of
refinement can only be demonstrated due to colinear boundary vertices and
edges spanning the mesh, in 3D the issue is more common.

problem of finding a mesh modification𝜓 (𝑀) = 𝑀 ′ that transforms

the given tetrahedral mesh 𝑀 into another tetrahedral mesh 𝑀 ′

covering the same space, such that there exists a PL map 𝜙 : 𝑀 ′ →
𝐷 ⊂ R3

, mapping 𝑀 ′ onto the desired domain 𝐷 (cf. Figure 2).

Instead of remeshing𝑀 arbitrarily, we restrict to refinement to arrive
at𝑀 ′. This is to ensure there is a simple relation between𝑀 and𝑀 ′

(each element of𝑀 corresponds to and coincides with a union of one

or more elements of𝑀 ′), so as to minimize interfacing challenges

with upstream and downstream processes.

Similar to many other works on mapping and parametrization,

we consider a restricted class of domain shapes only. Concretely, we

assume the desired volumetric domain 𝐷 is star-shaped, as defined
further below. Note that a bijection between two arbitrary shapes

𝑀1 and𝑀2 (of ball-topology) can be defined as a composition of two

maps 𝜙1 → 𝐷 , 𝜙2 → 𝐷 via such a domain, namely as 𝜙−1

2
◦ 𝜙1. In

concurrent work [Hinderink and Campen 2023] the same problem

setting as ours is addressed using an alternative approach.

1.1 Contributions
The main contribution of our work is a novel progressive mapping
framework called Shrink-and-Expand (SaE) based on the concept

of expansion cones. We see it as the root of a potential family of

algorithms that produce maps from a ball-topology tetrahedral mesh

to a star-shaped domain, exactly respecting a prescribed boundary

map. It follows the idea of initializing the map such that all interior

mesh elements are shrunk to a single common point. Then, the

map can be incrementally modified so as to expand mesh elements,

one-by-one or in a divide-and-conquer manner. Mesh refinement is

performed on-the-fly, wherever necessary to maintain the invariant

that no element is ever inverted by an expansion. Unless a specific

topological condition is violated (cf. Section 4.3.1), the approach, by

construction, yields a map that is a bijection.

Based on this framework, we furthermore describe a concrete

prototype algorithm. It uses exact rational arithmetic; this allows

ensuring correctness (though interfacing with floating point-based

downstream applications is nontrivial cf. Section 6.2.1). We evaluate

and benchmark it on a large dataset of ball-topology tetrahedral

meshes, mapping to multiple types of domain shapes. We hasten

to emphasize that this prototype is limited in terms of efficiency,

in that for a portion of our benchmarking dataset it exceeds rea-

sonable runtime. Nevertheless, we observe that it already clearly

outperforms the state of art in terms of achieving bijectivity within

a given a time limit.

The source code of our implementation and the dataset are avail-

able at https://www.algohex.eu/publications/expansion-cones/.

2 RELATED WORK
Mapping Triangle Meshes. For triangle meshes, guaranteed solu-

tions for the construction of bijective maps to convex 2D domains

can be found early in the literature [Tutte 1963; Floater 1997; Sheffer

et al. 2006]. Extensions to broader domain classes [Kraevoy et al.

2003; Weber and Zorin 2014; Aigerman and Lipman 2015] or to maps

between triangulated surfaces [Schreiner et al. 2004; Kraevoy and

Sheffer 2004; Schmidt et al. 2019, 2020] followed, as did improve-

ments in terms of numerical robustness [Shen et al. 2019].

Besides such constructive approaches, many forms of numerical

optimization for map distortion minimization have been explored,

e.g. [Hormann and Greiner 2000; Lipman 2012; Fu et al. 2015]. When

initialized with a bijective (or injective) map, this property can

be maintained in the process by means of barriers or constraints

[Schüller et al. 2013; Bommes et al. 2013; Smith and Schaefer 2015;

Rabinovich et al. 2017].

Mapping Tetrahedral Meshes. In contrast to the above wide range

of solutions for the 2D case, the analogous 3D problem of finding a

bijective volumetric map of a tetrahedral mesh onto a 3D domain

remains a very difficult challenge. A discussion of some underlying

reasons can be found in [Campen et al. 2016]. In particular, several

fundamental theorems that the above 2D methods are directly or

indirectly based on do not extend to 3D, or at least not in a simple

manner. A notable example is a discrete version [Floater 2003] of the

Radó-Kneser-Choquet theorem, stating that a convex combination

map between any disc-topology triangle mesh and the unit disc is

a bijection. This result for 2D meshes unfortunately does not hold

in 3D [Floater and Pham-Trong 2006; Alexa 2023].

Reviewing the literature, an everlasting conflict can be observed

between robustness (achieving injectivity or bijectivity), efficiency

(runtime), and constraint satisfaction (specification of the target

shape) of 3D mapping methods. Methods commonly perform well

in one or two but not all three of these aspects. For instance, [Liao

et al. 2021], which deals with maps for the purpose of deformation,

guarantees local injectivity, but not the satisfaction of positional

constraints. By contrast, [Xia et al. 2010] enforces constraint satis-

faction, but guarantees bijectivity only for a very restricted class of

input shapes. Likewise, [Aigerman and Lipman 2013] can enforce

positional constraints and is fast, but cannot guarantee yielding an

injective map. Finally, [Campen et al. 2016] provides guarantees

regarding both constraint satisfaction and bijectivity, but often re-

quires heavy mesh refinement to output a piecewise linear map rep-

resentation, impeding heavily on run time performance. This latter

work highlights, though, that mesh refinement can be an important

ingredient to achieve robustness with respect to discretization.
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Recently, there has been a certain focus on numerical optimization-

based methods, aiming at injectivity by minimizing the amount of

map inversions, often in combination with lowering map distortion

[Fu et al. 2015; Su et al. 2019; Du et al. 2020; Garanzha et al. 2021].

However, finding a formulation with a smooth and convex objective,

such that the global optimum can be found, and at the same time

guaranteeing that this optimum is injective remains a difficult chal-

lenge. Even worse, assuming a fixed discretization, as given by the

input mesh, such a map may not even exist, unless some form of re-

finement is employed. While mesh refinement has been considered

in various works on the 2D problem [Kraevoy et al. 2003; Lee et al.

2008; Jin et al. 2014; Shen et al. 2019; Gillespie et al. 2021; Campen

et al. 2021], to the best of our knowledge the only 3D mapping

method systematically using any such operations for the purpose of

ensuring feasibility is [Campen et al. 2016], albeit not in an numeri-

cal optimization-based context. Some further methods make use of

more general remeshing in the context of 3D deformation-oriented

mappings [Wicke et al. 2010], e.g. to improve simulation quality

[Narain et al. 2012; Anderson et al. 2005].

Progressive Embedding. Our work was in part inspired by the

progressive embedding idea [Shen et al. 2019], which allows yield-

ing bijective 2D maps onto planar domains. First, given an initial

map, it collapses edges until all inverted elements are gone. Then,

in essence, those collapses are undone in reverse order, position-

ing the reintroduced vertices in the domain in such a way that no

degenerate or flipped triangles emerge, ultimately yielding the de-

sired map. In an extreme case, it may be necessary to collapse until

only a single interior vertex remains. Such collapse sequences are

known to always exist for disc-topology triangle meshes under mild

conditions. Likewise, the ability to find a valid position for each

reintroduced vertex is shown to be guaranteed.

However, neither of these two properties hold in an analogous

3D setting [Livesu 2020]. Indeed, edges that do not satisfy the link

condition are not collapsible [Dey et al. 1999], and while this can

easily be circumvented in 2D [Shen et al. 2019], the range of possible

blocking configurations drastically increases in 3D. Although for

any tetrahedral mesh there exists a finite sequence of barycentric

subdivisions that guarantees to make its full collapsing possible

[Adiprasito and Benedetti 2020], there is no efficient known way to

find such a sequence. Regarding the second stage, one can easily find

examples of a vertex that cannot be reintroduced at any position

without creating degenerate or inverted tetrahedra, as shown in

Figure 3. On a conceptual level, our approach can be viewed as not

topologically collapsing but geometrically shrinking all interior ver-

tices to a common point (thereby circumventing the above obstacle),

and then expanding vertices again, albeit not in a fixed order and

assisted by systematic mesh refinement and map warping (thereby

yielding valid positioning options).

3 OVERVIEW
First, we introduce a set of underlying concepts for our method.

Since all concepts these are well-suited for both 2D and 3D, we will

often give 2D visual examples as they are sufficient to express most

concepts and easier to read.

Fig. 3. Left: a vertex 𝑣′ (formerly collapsed onto 𝑣) is reintroduced and
positioned according to the red arrow; the thus reintroduced tetrahedra
around the edge (𝑣, 𝑣′) get a positive volume. Right: here, by contrast,
the normals of the faces (𝑣, 𝑎,𝑏) and (𝑣, 𝑐,𝑑) (green arrows) are opposite.
Regardless of where 𝑣′ would be positioned, either the tetrahedra (𝑣, 𝑎,𝑏, 𝑣′)
and (𝑣, 𝑐,𝑑, 𝑣′) would both be degenerate or one of them would be inverted.
The bottom sides of the triangles are colored blue for clarity.

3.1 Fundamentals
Star-Shapedness: A domain 𝐷 is weakly star-shaped if and only if

there exists a guard, a point 𝑠0 ∈ 𝐷 such that for every point 𝑠 ∈ 𝐷
the straight line segment 𝑠0𝑠 lies entirely inside of 𝐷 . The set of all

guards is called the kernel of 𝐷 . A guard in the interior of the kernel

(i.e. not on its boundary) will be called a center of 𝐷 . The domain

is strongly star-shaped if the kernel in addition is non-degenerate,

i.e. it has a non-zero volume [Hansen et al. 2020] and thus has a

center. Herein we make use of the strong notion only and will omit

the qualifier for brevity. Note that convex domains are a subset of

star-shaped domains, with the kernel being the entire domain.

Refinement Map: We will perform mesh refinement by means of

the edge split operator. By splitting an edge 𝑒 = (𝑎, 𝑏), its is replaced
by two edges (𝑎, 𝑐) and (𝑐, 𝑏), and all tetrahedra (𝑎, 𝑏, 𝑖, 𝑗) are split
into two tetrahedra (𝑎, 𝑐, 𝑖, 𝑗) and (𝑐, 𝑏, 𝑖, 𝑗). By default, this new

vertex 𝑐 , which we call a mid-vertex, is initially located at the mid-

point between vertices 𝑎 and 𝑏. We call a sequence of such splits a

refinement map, denoted by𝜓 in the following.

3.2 Approach
Input: Our method takes a tetrahedral mesh𝑀 of ball-topology,

embedded in R3
such that each tetrahedron (also called cell) has a

positive volume. Its boundary is denoted 𝜕𝑀 . The set of vertices is

𝑉 = 𝑉 ◦∪𝑉 •, with boundary vertices𝑉 ◦ and interior vertices𝑉 •. We

use𝑀 to denote the mesh as well as the subset of R3
it occupies; the

distinction will be clear from the context. In addition, an injective

orientation-preserving boundary map 𝜙0 : 𝜕𝑀 → R3
is taken as

input, such that 𝜙0 (𝜕𝑀) is the boundary of a star-shaped domain 𝐷 .

𝜙0 is specified in terms of boundary vertex images, 𝜙0 (𝑉 ◦), and
interpreted as linear over the boundary triangles.

Output: Our goal is to find a map 𝜙 : 𝑀 ′ → 𝐷 ⊂ R3
, linear per

tetrahedron of a possibly refined version 𝑀 ′ of 𝑀 , that conforms

with the boundary map 𝜙0 and is injective. This implies it is bijective

onto the star-shaped domain𝐷 defined by𝜙0.𝑀
′
is obtained from𝑀

by means of a refinement map 𝜓 , a sequence of edge splits only.

Their relation thus is simple, they are nested, and the map 𝜙 is

also piecewise linear on 𝑀 , but with multiple linear pieces per

tetrahedron. Both 𝜓 and 𝜙 are crafted with a sequence of steps

carefully designed to ensure the bijectivity of 𝜙 .
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Fig. 4. 2D (top) and 3D (bottom) example of a cluster {𝑠𝑖 , 𝑡𝑖 } and the expansion cone of its subcluster {𝑡𝑖 }. Tip vertices are labelled 𝑡 , base vertices 𝑏 and other
submesh vertices 𝑠 . From left to right we have (a): the expansion cone of the subcluster {𝑡𝑖 } inside a small mesh (most of the 3D mesh is omitted to avoid
clutter). (b): coincident vertices are visually pulled apart to show the degenerate simplices. (c): just the submesh. (d): just the expansion cone. Simplices are
color-coded as follows: blue means degenerate, i.e. incident to at least two coincident vertices, orange means “spoke”, i.e. connecting the tips and the base,
green means base, purple means submesh boundary and gray is the rest. Notice that in both examples the expansion cone is not of ball-topology (disc-topology
in the 2D case).

Initialization: As a first step of our method, we pick an interior

guard 𝑐 of 𝐷 , set 𝜙 (𝑣𝑖 ) = 𝑐,∀𝑣𝑖 ∈ 𝑉 • and 𝜙 (𝑣𝑖 ) = 𝜙0 (𝑣𝑖 ),∀𝑣𝑖 ∈ 𝑉 ◦.
This initial map conforms with 𝜙0 on the boundary, and maps all

interior vertices to a common point in the interior. This initial map

is similar in spirit to that of Shen et al. [2019] in the 2D case, with

the major difference that we do not topologically (in terms of mesh

connectivity) but only geometrically collapse the inner elements,

circumventing the topological issues discussed in Section 2.

Invariants: An important property of the initial map is that it,

while degenerating many tetrahedra, does not invert any tetrahe-

dron. This will be an invariant in the following construction. Fur-

thermore, all degenerate tetrahedra are degenerate due to coincident

vertices, not to noncoincident colinear or noncoincident coplanar

vertices. This likewise will be an invariant. Starting from this ini-

tial situation, our goal is to step-by-step find degenerate tetrahedra

whose volume can be made positive by pulling coinciding vertices

(more precisely: their images under 𝜙) apart within 𝐷 .

Fig. 5. A 2D mesh showing unexpanded (clustered) vertices (blue) and
expanded vertices (green). The zero-length edges (connecting two coincident
vertices) and zero-area triangles (with at least two coincident vertices) are
drawn slightly expanded (in blue) for visualization purposes.

3.3 Clusters & Cones
Cluster: We call cluster a set of interior vertices which are co-

incident under (a current state of) map 𝜙 . A cluster containing 𝑘

vertices is called a 𝑘-cluster (with 𝑘 ≥ 1). Assuming an arbitrary

ordering, we denote as 𝐶𝑖 the 𝑖-th cluster. The cluster containing

a given vertex 𝑣 ∈ 𝑉 • is denoted 𝐶 (𝑣). A vertex is called expanded
if it forms a 1-cluster, 𝐶 (𝑣) = {𝑣}, otherwise unexpanded. Initially,
there is only one cluster 𝐶0 = 𝑉 •. See Figure 5 for a 2D illustration

of this concept. A subcluster is a strict subset 𝑆 ⊂ 𝐶 of a cluster 𝐶 .

Its complement is denoted 𝑆 = 𝐶 \𝑆 . 1-(sub)clusters are called trivial,
while 𝑘-(sub)clusters, for 𝑘 > 1, are called non-trivial.

Cluster Split: On the highest level, our framework makes use of a

single operation that is applied repeatedly: the cluster split, splitting
a cluster into two. The algorithm terminates once all clusters are

trivial, i.e. when all vertices are expanded. A cluster 𝐶 is split by

selecting a subcluster 𝑆 ⊂ 𝐶 and translating all vertices of 𝑆 by a

common vector 𝑡 , maintaining their coincidence: 𝜙 (𝑆) ← 𝜙 (𝑆) + 𝑡 .
Afterwards the former subclusters 𝑆 and 𝑆 form two smaller separate

clusters. The challenge lies in finding a subcluster 𝑆 and a vector 𝑡

such that this maintains our invariants, most importantly that no

tetrahedron is inverted. To find these, we make use of the following

concepts.

Subcluster Mesh: The subcluster mesh (or submesh for short) of

a subcluster 𝑆 , denoted as 𝑆𝑢𝑏𝑚𝑒𝑠ℎ(𝑆), is the closure of the set

{𝜎 ∈ 𝑀 |𝜎∩𝑆 ≠ ∅}, the set of all simplices that are incident to at least

one vertex of 𝑆 . Closure here means that also their subsimplicies are

included; i.e. a tetrahedron’s triangles, a triangle’s edges, an edge’s

vertices. Informally, it is the union of the subcluster vertices’ direct

neighborhoods. Figure 4c shows an example of a subcluster mesh.
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Fig. 6. 3D example of a topologically-expandable subcluster {𝑡 } (its expan-
sion cone has ball-topology and a disc-topology base) that is not simply-
expandable. The two orange spoke faces (𝑡, 𝑏1, 𝑏0) and (𝑡, 𝑏3, 𝑏2) have nor-
mals such that the expansion cone is not star-shaped. Any movement of
the tip vertex 𝑡 would invert at least one of the degenerate tetrahedra (not
shown) that surround the cone’s outer spokes by definition.

Expansion Cone: The expansion cone of a subcluster 𝑆 of cluster𝐶 ,
denoted 𝐸𝐶 (𝑆), is the subcluster mesh 𝑆𝑢𝑏𝑚𝑒𝑠ℎ(𝑆) with all sim-

plices removed that are incident to a vertex of the complement 𝑆 .

Concretely: 𝐸𝐶 (𝑆) = 𝑆𝑢𝑏𝑚𝑒𝑠ℎ(𝑆) \ {𝜎 ∈ 𝑀 |𝜎 ∩ (𝑆) ≠ ∅}. Figures 1c
and 4d show examples of expansion cones. We call the vertices of 𝑆

the tips of 𝐸𝐶 (𝑆) and all simplices of 𝐸𝐶 (𝑆) that are not incident to
any vertex of 𝑆 the base of 𝐸𝐶 (𝑆). Simplices incident to the base and

the tips are called spokes. The reason for defining the expansion cone
is that it tells us how the translation vector 𝑡 can be chosen such that

the cluster split of 𝑆 from 𝐶 along 𝑡 maintains the above invariants.

Namely, to that end, we need to choose 𝑡 such that 𝜙 (𝑆) + 𝑡 lies
inside the kernel of 𝐸𝐶 (𝑆), as illustrated in 2D in Figure 1c. In this

sense, the expansion cone defines how the subcluster can validly be

expanded from its cluster.

Expandability: A subcluster whose expansion cone is star-shaped

is called simply-expandable, because it immediately allows for a clus-

ter split. Any center of the cone (a point in its kernel’s interior) can

be chosen as target. If a cone is not star-shaped but has ball-topology

(and a disc-topology base), the obstacle to expandability is of geomet-

rical kind only; we call the corresponding subcluster topologically-
expandable, see Figure 6. If it does not even have this topology (as

in the examples in Figure 4d), the subcluster is unexpandable. In Ap-

pendix A the topology check is detailed. Topologically-expandable

subclusters can be made simply-expandable through careful defor-

mations of the neighborhood, i.e. adjustements to 𝜙 (𝑆𝑢𝑏𝑚𝑒𝑠ℎ(𝑆)),
possibly assisted by mesh refinement.

4 PROGRESSIVE EXPANSION FRAMEWORK
Before we give a complete and generic description of our frame-

work, let us get a better grasp of the idea, based on the 2D example

shown in Figure 7. For simplicity, let us assume for a moment that

we can always find a trivial subcluster (of the initial cluster 𝐶0)

that is simply-expandable. For this subcluster, we then perform a

cluster split, expanding the subcluster’s single vertex to a center

of its expansion cone. Note that this strictly reduces the global co-

incidence number, the number of vertex pairs (𝑣,𝑤), 𝑣 ≠ 𝑤 , with

𝜙 (𝑣) = 𝜙 (𝑤). This is repeated until all vertices have been expanded

and 𝐶0 becomes trivial, with only one vertex left. This means the

coincidence number is zero, which, due to our invariants, implies

that all tetrahedra have positive volume under 𝜙 .

Fig. 7. 2D example of a simple progressive expansion process. We start from
the leftmost mesh with all 4 interior vertices at the same location (the blue
simplices are actually degenerate) and then expand the clustered vertices
one by one. The three middle images show the intermediate steps, with the
iteratively expanded vertex’ expansion cone highlighted. The cone base is in
green, spokes in orange. The arrows show the translation vectors 𝑡 of those
vertices within their expansion cones’ kernels. The rightmost image shows
the result, with all triangles having positive area. The last vertex does not
need to be expanded since the cluster has already become trivial.

If no trivial subcluster is simply-expandable at some point, we can

also choose a simply-expandable larger (non-trivial) subcluster for

expansion. This likewise has the desired strictly monotonic effect

on the coincidence number. This results in two non-trivial clusters,

which are then both treated analogously to the single non-trivial

cluster 𝐶0 in the above example.

4.1 Star-Shapification
Unfortunately, in the general setting, simply-expandable subclusters

(whether trivial or non-trivial) do not always exist. In such a case we

fall back to a topologically-expandable subcluster. While this does

not allow for expansion right away, we can warp the mesh’s image

under the map around the subcluster so as to make the expansion

cone star-shaped and thus the subcluster simply-expandable. In such

a case, we say the expansion cone is star-shapified. While this is

obviously possible with a smooth continuous deformation, we wish

to remain in a discrete PL setting. Through mesh refinement the de-

grees of freedom can be obtained that are necessary to express such

a warp piecewise linearly while maintaining bijectivity. With such

a procedure available, we can effectively consider all topologically-

expandable cones as simply-expandable, up to star-shapification.
In Section 5 we describe one concrete option to implement this

operation.

4.2 Isolation
After splitting a cluster into two non-trivial clusters, these two are

directly adjacent. This implies that for at least some of their subclus-

ters, the expansion cone is incident to the other cluster. Hence, their

bases contain degenerate elements—which is not the case for the ini-

tial cluster or when expanding trivial subclusters. In order to avoid

the need for special handling of such more complex expansion cone

structures, we opt to apply one additional operation after splitting

a cluster into two non-trivial clusters. Namely, we isolate the two
clusters from each other in terms of direct connectivity, essentially

by splitting the edges that connect them. Afterwards, each cluster

has the same structural characteristics like the initial cluster, in that

there are no coincident vertices in its 1-ring. In Section 5 we describe

one concrete option to implement this operation.
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Algorithm 1 Our generic Shrink-and-Expand framework

Input:
𝑀 , a ball-topology tetrahedral mesh

𝜙0, a homeomorphic boundary PL map onto a star-shaped domain 𝐷

Output:
𝜓 , a refinement map of𝑀 , yielding𝑀′

𝜙 , a homeomorphic volumetric PL map of𝑀′ onto 𝐷
1: procedure ProgressiveExpansion(𝑀,𝜙0)

2: 𝜙 (𝑉 ◦) ← 𝜙0 (𝑉 ◦)
3: 𝜙 (𝑉 •) ← Center(𝐷)

4: while |𝐶 (𝑣) | > 1 for any 𝑣 do
5: 𝑆 ← any topologically-expandable subcluster ⊲ if none→ fail

6: (𝜙,𝜓 ) ← Star-Shapify(𝑆)

7: 𝜙 (𝑆) ← Center(𝐸𝐶 (𝑆))
8: (𝜙,𝜓 ) ← Isolate(𝑆 , 𝑆)

9: end while
10: end procedure

4.3 Summary
Algorithm 1 summarizes our generic framework. The subroutines

• Center (selection of a center from a kernel),

• Star-Shapify (map modification to make a cone star-shaped),

• Isolate (separate adjacent non-trivial clusters), as well as

• the choice of the next subcluster in each iteration

can be implemented in many different ways. In the following we

describe and evaluate one concrete way.

4.3.1 Caveat. The algorithm succeeds in producing a bijection if

the mesh 𝑀 satisfies the topological condition that topologically-

expandable subclusters are always available. If this is not the case,

the algorithm will necessarily fail (line 5). In our experiments we

have not been able to identify examples of clusters in which every

single subcluster was unexpandable, but do not have a proof of

general feasibility either.

5 IMPLEMENTATION
This section describes a concrete realization of our framework by

discussing specific solutions for the aforementioned subproblems.

5.1 Subcluster Search
For reasons of efficiency, it makes sense to explore subclusters in

order of increasing size, starting with the set of all 1-subclusters S1

of all clusters. Furthermore, because subclusters whose submesh

is not connected are unexpandable, we form larger subclusters in-

crementally out of smaller ones, adding vertices from their 1-rings:

S𝑘+1 = {𝑆 ∪ {𝑣} | 𝑆 ∈ S𝑘 , 𝑛 ∈ 𝑁1 (𝑆)}, where 𝑁1 (𝑆) is the set

of vertices from 𝑆 (the remainder of the cluster) that are directly

adjacent to a vertex in 𝑆 .

Considering that an element of S𝑘+1 can be built out of multiple

𝑆 ∈ S𝑘 , algorithmically we employ a hash map to filter duplicates,

avoiding testing the same subcluster for expandability multiple

times. The ordered list of a subcluster’s vertex indices is used as key.

While this simple strategy suffices, there might be more efficient

ways to enumerate the connected subclusters, different orderings

that lead to finding an expandable subcluster more quickly, or even

ways to find expandable subclusters without exhaustive enumera-

tion and testing.

Experimentation led to the conclusion that, for overall efficiency,

it is advisable to further refine the order in which subclusters are

considered for expansion. Concretely, we give priority to subclusters

as follows: simply-expandable 𝑘-subclusters for 𝑘 = 1, 2, 3 (in this or-

der), followed by topologically-expandable 1-subclusters with small

expansion cones (≤ 30 tetrahedra), simply-expandable 𝑘-subclusters

for 𝑘 = 4, 5, and finally topologically-expandable 𝑘-subclusters, in

the order of increasing 𝑘 .

5.2 Center Choice
For the choice of a center, i.e. an interior guard, from a star-shaped

set (whether the domain 𝐷 or an expansion cone 𝐸𝐶 (𝑆)), we opt to
compute the Chebyshev center, the interior point with maximum

distance to the set’s boundary. This is easily done by means of a lin-

ear program, maximizing the distance to all the boundary triangles’

supporting plane.

While any center could be chosen without affecting the algo-

rithm’s correctness, the rationale for this specific choice is that we ex-

pect this maximally centered choice to typically be well-behaved in

terms of numerics. Expanding a subcluster to this position expands

the incident degenerate tetrahedra, which become non-degenerate,

the most. This also leaves more room for adjacent clusters that still

need to be expanded in subsequent steps.

5.3 Star-Shapification
Assuming only a topologically-expandable subcluster is available,

we need a way to make it simply-expandable. We will first consider

trivial subclusters (with a single tip vertex), and turn to non-trivial

subclusters in Section 5.3.1.

Let us focus for a moment on the expansion cone in isolation,

ignoring the mesh around it. We can deform it into star-shape with-

out degenerating or inverting any contained elements as follows.

We pick an arbitrary (e.g. centermost) vertex from the base of the

expansion cone, the designated witness vertex 𝑤 , and then “collapse”

the whole expansion cone to the 1-ring neighborhood of the edge

(𝑤, 𝑡), with 𝑡 being the tip of the expansion cone. This can be done

incrementally, triangle by triangle of the cone’s base in an outside-in

manner, moving a vertex inwards so as to (temporarily) degenerate

the triangle’s spoke tetrahedron. This process is illustrated in Fig-

ure 8. The collapsed expansion cone necessarily is star-shaped, as

the edge (𝑤, 𝑡) lies in its kernel. However, it now contains multiple

degenerate tetrahedra (those that were collapsed onto the 1-ring).

Fig. 8. By iteratively “collapsing” base vertices 𝑏0 and then 𝑏1 to
𝜕𝑁1 ( (𝑤, 𝑡 )) , with 𝑤 being the “witness” vertex, we deform 𝐸𝐶 (𝑡 ) to be-
come star-shaped. Note that this degenerates two previously nondegenerate
tetrahedra of 𝐸𝐶 (𝑡 ) . A subsequent “contraction” will expand them again.
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Fig. 9. Top: A 3D expansion cone and its evolution through a short star-shapification process. Bottom: A 2D projection view of this, showing the base, with the
movement of vertices indicated by red arrows; the blue triangles are shown for visualization but are actually projected degenerate tetrahedra. For a given SS
(𝑏0 → 𝑏1) , obtained from the initial expansion cone (left), we first perform, from left to right, the Collapse Sequence as follows: The edge (𝑡, 𝑏0) is split,
creating vertex 𝑏′

0
, which is “collapsed” onto spoke face (𝑡, 𝑏5, 𝑏1) . Then, edge (𝑡, 𝑏1) is split, creating 𝑏′

1
, which is collapsed onto spoke face (𝑡, 𝑏5, 𝑏2) . Since

𝑏′
0
was collapsed onto a face incident to 𝑏1, its spoke edge 𝑡, 𝑏′

0
is also split, creating vertex 𝑏′′

0
. Finally, 𝑏′′

0
is collapsed onto face (𝑡, 𝑏5, 𝑏

′
1
) . The grey parts are

kept for visualization but are not part of the expansion cone, cf. Figure 10. The result is that vertices 𝑏′′
0
and 𝑏′

1
are collapsed to the boundary of 𝑁1 ( (𝑤, 𝑡 ))

and 𝐸𝐶 (𝑡 ) is star-shaped. The last two steps are the Contraction Sequence: First, edge (𝑏2, 𝑡 ) is split, creating 𝑏′
2
, which is then moved towards the (𝑤, 𝑡 ) axis,

making its incident cells non-degenerate. This contraction step is repeated for the spoke (𝑏′
1
, 𝑡 ) . All cells of 𝐸𝐶 (𝑡 ) are now non-degenerate.

We therefore then slightly “contract” the base vertices, radially to-

wards the edge (𝑤, 𝑡) in inside-out order, so as to incrementally

expand the temporarily degenerated tetrahedra, while maintaining

star-shapedness. This yields a simply-expandable situation.

Of course, however, we must also take the mesh surrounding the

expansion cone into account. The above procedure, moving base

vertices around, might easily invert adjacent tetrahedra. There may

just not be enough room for the required amount of movement.

Hence, if a base vertex 𝑏 cannot be moved as desired, we perform

a split of its spoke edge (𝑡, 𝑏), adding mid-vertex 𝑏 ′. Note that this
reduces the extent of the expansion cone of tip 𝑡 , as now 𝑏 ′ is a
base vertex, while 𝑏 is no direct neighbor anymore. At the same

time, this new base vertex 𝑏 ′ now has freedom to move, within its

1-ring neighborhood, without causing inversions. This is illustrated

in Figure 10.

Figure 9 gives a complete example of the overall process on a

simple mesh. Implementation details on each step can be found

in Appendices B.1 (determining a collapse order), B.2 (collapsing

elements, assisted by spoke splits), and B.3 (contracting the star-

shaped expansion cone to restore positive volume).

Fig. 10. By splitting a spoke edge going from the tip vertex 𝑡 to a base
vertex 𝑏 and adding a new vertex 𝑏′ between them, we effectively remove
vertex 𝑏 and its incident tetrahedra from the expansion cone, as 𝑏 is no
longer part of any simplex incident to 𝑡 . This new base vertex 𝑏′ is now free
to move without creating inverted elements, as long as it moves within the
kernel of its 1-ring neighborhood.

5.3.1 Nontrivial Subcluster Star-Shapification. So far we considered
only trivial subclusters, i.e. expansion cones with a single tip. In

the case of multiple tips, the above star-shapification approach does

not apply as-is. This is because we assumed that each base vertex

is connected to the tip with a unique spoke edge. In the case of

multiple clustered tips, by contrast, a base vertex may be connected

to the tips via multiple edges, of degenerate spoke faces or tetrahedra.
Instead, we will first “simulate” this process by star-shapifying an

expansion cone consisting of the same base but with a single tip.

All spoke splits will then be duplicated across the degenerate faces

and tetrahedra represented by single edges in the single-tipped

copy of the subcluster expansion cone. The details are left to a

formal description of this duplication process, given by Algorithm 6.

Figure 11 shows a small example of this additional care.

Fig. 11. A series of spoke splits on a 1-subcluster expansion cone (left)
and their equivalent on a 2-subcluster expansion cone (right). Each split
(𝑏𝑘 , 𝑡 ) → 𝑏𝑘+1 is propagated on any previously-created edge (𝑏𝑘

𝑗
, 𝑡𝑖 ) ,

where {𝑡𝑖 } is the set of cluster vertices. More splits are required after every
spoke split to ensure that the “layers” of star-shapification remain isolated,
i.e. to ensure that there is no edge (𝑏𝑘 , 𝑏𝑘+𝑚) with𝑚 > 1 or (𝑏𝑘 , 𝑡𝑖 ) where
𝑘 < 𝑛 and the edge (𝑏, 𝑡 ) was split 𝑛 times. Note that the interior edges
have been omitted for readability reasons and that as usual, the light blue
simplices are degenerate. Each set of vertices {𝑏𝑘

𝑗
} creates a new cluster

that subsequently needs to be expanded.
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Fig. 12. A small example of cluster isolation between two 2-clusters {𝑏0, 𝑏1 }
and {𝑎0, 𝑎1 } (left). As usual, degenerate simplices are colored blue. The first
step is to split (𝑎0, 𝑏0) → 𝑐0 and then expand the new mid-vertex within
its expansion cone (center left). We then repeat this process for (𝑎1, 𝑏0)
(center right) and thus isolate the two clusters from each other. The right-
most figure highlights the faces making up the newly-created buffer surface
between the two clusters (purple).

Note that the duplication of a split across degenerate spoke faces

and tetrahedra creates a new cluster. Importantly, this type of cluster

is simply-expandable (Appendix C.1). Hence, its subsequent expan-

sion will not require star-shapification, thus will not introduce new

clusters, thus will not lead to potentially infinite recursion. Instead

of using the standard generic expansion routine (including isola-

tion), a simplified routine (see Algorithm 6) specialized to this type

of clusters proved to be sufficient and efficient in our experiments,

though a fall-back to the standard routine may be necessary in

general.

5.4 Cluster Isolation
After splitting a cluster 𝐶 into two clusters 𝐶𝑎 and 𝐶𝑏 which both

are nontrivial, there may be multiple edges connecting these. In

particular, a subcluster 𝑆 ⊂ 𝐶𝑎 may have an expansion cone whose

base contains multiple vertices from 𝐶𝑏 . The base then contains

degenerate elements—which is in contrast to the requirements of our

star-shapification approach from Section 5.3. We could generalize

the approach to handle such configurations, but opt for the simpler

strategy of resolving them beforehand.

This is done by isolating the two clusters by means of a buffer

layer of vertices. To this end we simply split all edges connecting

the two clusters. This results in a cluster of vertices that is simply-

expandable (Appendix C.1), analogous to the clusters created by

splitting multiple coincident spoke edges in Section 5.3.1. After their

expansion, 𝐶𝑎 and 𝐶𝑏 are no longer directly adjacent. This process

is illustrated by Figure 12 and implementation details are given in

Appendix C.

5.5 Numerics & Efficiency
To avoid issues due to limited numerical precision, we make use

of an infinite precision representation, for which we use CGAL’s

rational numbers [Fabri and Pion 2009]. This allows safely finding

centers, exactly testing star-shapedness, and properly dealing with

exact coplanarity or colinearity that occur temporarily in the star-

shapification procedure (Appendix B.2).

Note that the exact representation of the Chebyshev center or

the mid-vertices resulting from splits is increasingly expensive (in

terms of memory and runtime) the more nested operations occur.

Minimizing the overall required precision and the number of splits

are thus important aspects of our implementation.

5.5.1 Adaptive Precision Reduction. The first way we can limit the

growth of the number representation is to systematically reduce

the precision of newly computed vertex positions, without however

invalidating the required properties (no inversions, etc). Indeed, we

can truncate the precision of a computed center, as long as it remains

a center, i.e. inside the respective kernel. Our approach here is to

perform a binary search, starting from the precision of the exact

representation, to find the lowest precision that is sufficient. We

perform a maximum of 10 iterations, and stop when the interval

drops below 32 bytes. Those specific values were obtained empiri-

cally and represent a good trade-off between the effort required to

reduce the necessary precision and the long-term benefit for the

total expansion performance. In our experiments, this mechanism

was sufficient to make a significant difference in terms of run time,

with factors beyond 10×.

5.5.2 Vertex Relaxation. Another very helpful method is to period-

ically run a relaxation pass, moving some expanded, non-boundary

vertices to the barycenter of their 1-ring neighbors as long as no in-

versions are created. The precision of the newly computed barycen-

ter is also systematically reduced, the same way as described in the

previous section. The choice of vertices subjected to this relaxation

can have a drastic influence on performance. One could for instance

limit the relaxation to the 𝑘-ring neighborhood of the remaining

unexpanded vertices, or, simply smooth all interior expanded ver-

tices. The goal is then to find a trade-off between the amount of

time spent on relaxation versus the time gained running the next

steps of the progressive expansion algorithm. Indeed, some expan-

sion cones that are initially only topologically-expandable tend to

become simply-expandable after relaxation. From our experiments,

relaxing the 1-ring neighborhood of the remaining unexpanded ver-

tices already increases the number of simply-expandable expansion

cones. Therefore, we periodically run such a relaxation pass during

our algorithm to improve its run time.

5.5.3 Edge Collapsing. Some operations, such as star-shapifying

large expansion cones, often require many splits and thus create a

large number of additional vertices. Those can then be part of the

expansion cones of other remaining unexpanded vertices, making

it increasingly costly to handle these. We thus add an additional

clean-up pass, removing all added vertices by means of halfedge

collapses that can be removed without creating new degeneracies

or inversions. For a vertex 𝑐 created by a split of edge (𝑎, 𝑏), only
halfedges (𝑐, 𝑎) or (𝑐, 𝑏) are considered, so as to maintain that 𝑀

and 𝑀 ′ are nested. Again, orders of magnitude of speed-up were

observed for complex instances, especially for those requiring many

star-shapifications.

5.6 The Prioritizing Expansion Algorithm
With all components described, we can now assemble a concrete

algorithm based on our framework, in particular making use of the

subcluster prioritization laid out in Section 5.1. Besides instantiating

the subroutines of Algorithm 1 with the concrete algorithms de-

scribed in Sections 5.1, 5.2, 5.3, and 5.4, we add the following details

discussed in Section 5.5:
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• Whenever new vertex image coordinates are computed (cen-

ters, relaxed positions), adaptive precision reduction (Sec-

tion 5.5.1) is performed.

• Whenever an expansion moved a nontrivial subcluster or

involved star-shapification, a relaxation pass (Section 5.5.2)

and a cleanup pass (Section 5.5.3) is performed, restricted to

the 1-ring neighbors of unexpanded vertices.

In the following we evaluate this algorithm, in particular its runtime

and refinement behavior, and compare against alternative volumet-

ric mapping methods.

6 EVALUATION
In the following we evaluate and analyze the behavior of our Priori-

tizing Expansion version of the Shrink-and-Expand (SaE) framework.

We furthermore compare it to related state-of-the-art methods, two

based on numerical optimization, TLC [Du et al. 2020] and FoF

[Garanzha et al. 2021], and one based on a combinatorial construc-

tion, FOL [Campen et al. 2016].

6.1 Dataset
While TLC comes with a benchmark dataset, it focuses on the 2D

case; the 3D subset is quite small and strongly biased towards one

particular shape. Aiming at benchmarking our method on more

diverse and challenging problems, we make use of the TetWild
dataset of tetrahedral meshes [Hu et al. 2018]. The subset of ball-

topology meshes consists or 3007 meshes, ranging from 156 to

1,283,106 tetrahedra. As a pre-processing step, so as to enable our

initial map, we split interior edges connecting two boundary vertices,

as well as interior faces whose three edges are boundary edges. For

each of those meshes we then construct four types of boundary

maps 𝜙0 as follows, so as to obtain input instances for the methods:

• Tetrahedron (T): We pick four boundary vertices randomly

and find the shortest path between each pair of vertices. Those

vertices are then mapped to the four corners of a unit tetra-

hedron centered at the origin and the paths to its edges, with

uniform distribution. The remaining boundary vertices are

mapped to the tetrahedron’s four faces with a Tutte embed-

ding. Note that depending on the random choice the result

may be invalid (coincident paths, implied degeneracies). In

such cases further attempts are made; if after 100 attempts no

valid boundary map is obtained, the mesh is dropped from

the dataset. This was the case for 29 meshes in total.

• Stiff Tetrahedron (ST): The idea is the same as for the pre-

vious one, except we start by picking one face of the initial

mesh and mapping it to a face of the target tetrahedron. The

Fig. 13. Each mesh of TetWild (left) has its boundary mapped to four differ-
ent targets: a Sphere, a “Stiff” Tetrahedron, a Tetrahedron, and a Random
Star. The Stiff Tetrahedron and the Random Star are the most challenging
cases, but for different reasons, as discussed in Section 6.1.

Fig. 14. One mesh of our dataset (left) and three bijective maps to (in
this order) tetrahedral, “stiff” tetrahedral and sphere boundaries. None of
our maps contain any inverted or degenerate tetrahedra, but they tend to
concentrate cells towards the center of the domain.

fourth vertex is still picked at random. This results in a mesh

that is geometrically more constrained closer to this initially-

mapped face, hence the inherent “stiffness” of this boundary.

Here 30 meshes are dropped due to not finding a valid random

boundary map.

• Sphere (S): Using the “Tetrahedron” boundary mapping as a

first step, we project all boundary vertices onto the circum-

sphere to obtain a spherical boundary map. From our experi-

ence, this is a safer way to generate a valid spherical boundary

map than, e.g., Laplacian smoothing based approaches, which

tend to yield some degenerate boundary faces.

• Random Star (𝑅𝑆): Finally, by randomly radially displacing

the boundary vertices after mapping them to a sphere, we

obtain a boundary that is guaranteed to be star-shaped by

design. We pick displacement factors uniformly in the range

[1, 10]. This creates very challenging test cases with domain

shapes containing high frequency details.

For all those boundaries (which are summarized in Figure 13),

we pick the origin as center; it is inside the kernel by design. To

provide an easier starting point for the optimization based methods

TLC and FoF, we compute an initial discrete harmonic mapping of

the interior, given the fixed boundary map.

6.2 Algorithm Analysis
To keep our full benchmarks within reasonable completion time,

we put a per-mesh time limit of 12h on our method (as well as on

all alternative methods in the following).

Running our method on the dataset shows that it never pro-

duces a non-bijective map but reaches the time limit in ~23.38% of

cases. Interestingly, output maps tend to form mesh images that are

somewhat compressed near the initial position of the main cluster,

as suggested by Figure 14. Figure 15 summarizes the timings we

Fig. 15. Distribution of completion timings for all success cases of SaE (log
scale). We grouped all 4 target boundary types, as the results are very similar
across types, highlighting an interesting property or our method.
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Fig. 16. Runtime depending on the input mesh size. It suggests an exponen-
tial relationship between the size of a mesh (initial number of tetrahedra)
and the total time required to obtain a valid bijective map. While meshes of
a broad range of sizes time out (from around 10

4 tetrahedra and up), a large
portion of meshes can be mapped within minutes. Remark: some instances
going beyond the 12h limit are due to the granularity of the timeout check
in the implementation (e.g. not inside a linear program solve).

obtained for the whole dataset with the four different boundary

mappings. It shows that while the majority of meshes can be fully

mapped within minutes, a considerable number of meshes can take

hours to be mapped. As shown in Figure 16, the mesh size (number

of tetrahedra) has a significant impact on the completion time, but

is not the sole factor. Figure 16 additionally suggests that overall

there is a non-polynomial relationship between the mesh size and

the total processing time.

The method’s relatively high success rate (within the time limit),

as analyzed further in Section 6.3, however, comes at the cost of

sometimes requiring some heavy refinement, as summarized by Fig-

ure 17. It is also interesting to note that contrary to the termination

time, there seems to be no relationship between mesh size and its

final growth ratio due to refinement, as shown by Figure 18.

For an overlook of how meshes are expanded in detail, in terms

of which expansion operations are used at what frequency, see

Figure 19. Clearly, the vast majority of expanded subclusters are

trivial and require no star-shapification. Among the the remaining

expansions, trivial subclusters with star-shapification tend to be

dominant over non-trivial subcluster expansion. Star-shapification

for non-trivial subclusters is required very rarely. Figure 20 shows

a few examples of how the run time can be distributed between our

expansion operations. Notice the high variability regarding which

parts of the algorithm are dominant.

Fig. 17. A distribution showing how much our method tends to make a
mesh grow in the number of vertices (log scale). The majority of meshes
increase by less than 9%, and about 85% of meshes increase by less than 2×.
However, a small portion of the dataset requires heavy refinement, reaching
up to 1042 times the initial number of vertices.

Fig. 18. As this scatter plot suggests, there seems to be no particular relation
between the size of a mesh and its growth ratio.

𝐸𝑡,𝑠𝑖𝑚𝑝𝑙𝑒

𝐸𝑡,𝑠𝑡𝑎𝑟

𝐸𝑛𝑡,𝑠𝑖𝑚𝑝𝑙𝑒

Fig. 19. Each mesh mapped to a point based on the ratio of its ver-
tices expanded by simple expansion of trivial subclusters (𝐸𝑡,𝑠𝑖𝑚𝑝𝑙𝑒 ), star-
shapifications of trivial subclusters (𝐸𝑡,𝑠𝑡𝑎𝑟 ), and simple expansions of non-
trivial subclusters (𝐸𝑛𝑡,𝑠𝑖𝑚𝑝𝑙𝑒 ). Cluster star-shapifications (generally <0.3%
of all expansions) are omitted.

Regarding vertex relaxation, as discussed in Section 5.5.2, while

we observe that it reduces runtime overall, note that it is not a nec-

essary component. There are numerous examples of instances that

Fig. 20. Timing distribution of the different algorithm parts, for 9 example
meshes selected to cover a wide range of total expansion time (𝑡 ) and
refinement ratio (𝑟𝑔). The parts are: simple expansion of trivial clusters
(𝐸𝑡,𝑠𝑖𝑚𝑝𝑙𝑒 ), trivial subcluster star-shapifications (𝐸𝑡,𝑠𝑡𝑎𝑟 ), simple expansions
of non-trivial subcluster (𝐸𝑛𝑡,𝑠𝑖𝑚𝑝𝑙𝑒 ), vertex relaxation, and edge collapsing.
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Fig. 21. Truncating the final maps to double precision leads to tiny bijectivity
violations for about 48% of them. This histogram shows how far these cases
are from being bijective.

terminate within the time limit regardless of whether the relaxation

passes are applied or not.

6.2.1 Floating Point Representation. As discussed in Section 5.5, our
implementation makes use of exact rational arithmetic. In practice,

conversion of the output to a standard floating-point representation

may be desired depending on the application context. A naive trun-

cation of the output map to standard double precision preserves

bijectivity in ~52% of the cases. Figure 21 details to what extent bijec-

tivity gets violated in the remaining cases due to tiny degeneracies

or inversions caused by numerical imprecision. The exploration of

means to improve on this aspect—either by performing the conver-

sion more carefully than by naive truncation or by already in the

expansion process avoiding near-degenerate configurations when-

ever possible—is a worthwhile direction for future work.

6.3 Comparison
No previous method is formulated for exactly the same setting as

ours (ball-topology input, star-shaped target domain, prescribed

boundarymap) and has the same sole goal (bijectivity). Nevertheless,

comparisons to related methods with at least similar settings and

goals can provide valuable insights, when keeping the differences

in mind.

Numerical Methods. Considering as success the generation of a

map that is bijective within a time limit of 12h, it turns out that

our method is significantly more successful than the 3D variants of

recent numerical optimization based methods TLC [Du et al. 2020]

and FoF [Garanzha et al. 2021]. Both methods’ implementations

were taken from the corresponding paper authors’ online repos-

itories; no parameter tweaking was performed. Success rates are

detailed in Table 1 with a focus on the different types of boundary

conditions, and in Table 2 relative to the size of the input mesh.

Figure 22 furthermore shows the relative distribution of successes

across methods. For details about how far these two methods are

from succeeding in cases of failure, refer to Figure 23. Of course,

these observations are valid only for our setting of ball-topology

meshes and the star-shaped domains. TLC and FoF are more general

and support a larger class of problems (arbitrary topology, arbitrary

domain shape), to which our method could not even be applied.

Also, both methods do not perform any mesh refinement, while for

our method the amount of refinement can be pretty high in some

Table 1. Overall success rates (within 12h per mesh) of each method, total
and per type of boundary map. Note that while for our method a failure
case is simply a timeout, for TLC and FoF it includes timeouts as well as non-
bijective output. Our method performs significantly better, especially for the
more challenging boundary mappings, namely ST and RS. Additionally, the
success rates of our method are very close between the 4 types, highlighting
an interesting property of our method. It is worth pointing out that the
relatively low success rates of TLC and FoF are not primarily caused by the
time limit; even when granting them 1 week per mesh, the total success
rates only increase to around 33% and 17%, respectively.

Total T ST S RS

TLC 25.07% 47.02% 20.94% 31.45% 0.97%

FoF 12.68% 15.48% 5.31% 22.58% 7.39%

SaE (ours) 76.62% 77.04% 77.34% 76.41% 75.97%

Table 2. Success rates accumulated over the four boundary types, sorted by
mesh size. Our method’s success rate is higher for all batches.

batch #cells range TLC FoF SaE (ours)

0 [ 156 , 5125 ] 32.58% 27.54% 100.00%
1 [ 5125 , 7516 ] 48.19% 32.49% 98.49%
2 [ 7516 , 10490 ] 39.63% 23.43% 92.02%
3 [ 10490 , 13913 ] 34.17% 18.05% 86.48%
4 [ 13930 , 18934 ] 29.55% 11.67% 85.47%
5 [ 18934 , 25559 ] 22.08% 5.37% 89.08%
6 [ 25559 , 36373 ] 15.11% 2.52% 80.69%
7 [ 36373 , 53548 ] 11.17% 1.34% 70.78%
8 [ 53548 , 86404 ] 10.41% 2.85% 46.43%
9 [ 86404 , 1283106 ] 07.73% 1.51% 16.72%

instances. However, we notice that the amount of refinement per-

formed by our method in those instances where TLC and FoF succeed
is actually quite low, as shown in Figure 24.

Besides robustness and growth, map quality in terms of dis-

tortion may be a relevant point of comparison—noting that our

method solely focuses on bijectivity and makes no direct effort

to minimize distortion. We consider a conformal distortion metric

tr(𝐽𝑇𝑡 𝐽𝑡 )/(det𝐽𝑡 )2/3 and a volume distortion metric det𝐽𝑡 + (det𝐽𝑡 )−1

(with 𝐽𝑡 being the Jacobian of the linear map of tetrahedron 𝑡 ). This

distortion analysis clearly shows that our method produces maps

Fig. 22. A roughly area-proportional Venn diagram showing the distribution
of success cases by method. Our method (SaE) can map a large number
of meshes that other methods cannot (6296), while a smaller number of
meshes (642) can be mapped by others but not by ours within the time limit.
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Table 3. Summary of the statistics of the various methods. The columns report the success rate (terminating with a map that is bijective in ≤12h), the timeout
rate, the runtime normalized by the number of tetrahedra in the input mesh, conformal distortion 𝑑𝑐𝑜𝑛𝑓 , volume distortion 𝑑𝑐𝑜𝑛𝑓 , and growth ratio. Note that
the gap between success rate and timeout rate is due to a method terminating within 12h but outputting a non-bijective map. As expected, compared to the
optimization based methods, our method produces much lower quality maps at a lower speed and at the cost of mesh refinement. By contrast, our method
shows a significantly higher success rate (in the time limit) than the other state-of-the-art methods, in line with the central goal of our novel framework. For
comparability, the runtime, distortion, and refinement numbers refer to the set of instances that are common successes of all three methods.

success timeout runtime per input tet (s) 𝑑𝑐𝑜𝑛𝑓 𝑑𝑣𝑜𝑙 refinement ratio

> 12h min avg max avg max avg max avg max

TLC 25.07% 30.72% 1.03 10−4 9.59 10−4 5.84 10−3 1.78 101 1.20 104 3.04 10
14

7.03 10
18 1 1

FoF 12.68% 39.24% 3.79 10
−6

4.72 10
−2

2.52 10
−1

1.26 10
2

4.93 10
5 4.17 1013 1.65 1017 1 1

SaE (ours) 76.62% 23.38% 2.82 10
−4

1.20 10
−2

2.55 10
0

1.23 10
203

2.04 10
210 > 10

308
1.10 16.63

Fig. 23. A histogram of the ratio of flipped tetrahedra in resulting maps
whenever TLC or FoF output a non-bijective map. While the average is
quite low, both methods produce also results that are quite far from being
bijective.

Fig. 24. Growth ratios for meshes for which FoF and TLC also succeed
in producing a valid map. Since TLC and FoF both operate without any
refinement, this plot gives an indication of how much truly unnecessary
refinement our method induces. The vast majority of instances cause very
little refinement, while a few cause a lot of refinement.

with very high distortion, as shown by Figure 25. Table 3 summarizes

the relative statistics of these methods in comparison.

Combinatorial Method. The method FOL [Campen et al. 2016],

based on a combinatorial construction, comes with guaranteed bi-

jectivity. We thus focus on comparisons of runtime and the amount

of mesh refinement performed to yield a piecewise linear output

map. As this method does not support arbitrary convex or star-

shaped domain shapes like our method, we restrict this comparison

to type S, the sphere domain subset of our dataset. FOL proceeds in

two stages, the construction of a bijective map and the generation

of a piecewise linear representation of this map. The latter stage,

which similar to our method makes use of refinement of the input

Fig. 25. These histograms show, per method, the conformal distortion and
volume distortion of the resulting maps over all tetrahedra of all meshes
for which the three methods succeed. Cases where the distortion exceeds
10

5 or 10
9, respectively, are aggregated in the last bar for readability. Not

surprisingly, as our method does not target distortion minimization but
solely bijectivity, the vast majority of elements generated by our method
have a very high distortion in comparison to TLC and FoF. Note that in
the case of volume distortion even the maximum representable by double
precision is reached—but bijectivity was verified in exact arithmetic, i.e. no
element is actually degenerated or inverted by the map.
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Fig. 26. Comparing the total runtime (per input tet) and the mesh refine-
ment ratio of our method and FOL on the sphere domain subset of the
dataset (and restricted to meshes where both methods finished within the
time limit). In terms of absolute growth (additional number of cells due to
refinement), FOL is at 4.3 × 10

5 on average while ours is at 3.10 × 10
3.

mesh, is optional—but needed when such a standard representa-

tion is desired. The first stage is generally very fast in comparison,

succeeding on each case of our entire dataset in under 3 minutes,

and in 4.2 seconds on average. The second stage, however, takes

significantly longer than our method and causes significantly more

refinement. This is detailed in Figure 26.

6.4 Limitations & Future Work
With the above discussed downsides (exponential runtime behavior,

over-refinement, high distortion) in mind, let us now discuss how

our method could be improved. In particular, while its robustness

is backed theoretically (assuming the condition described in Sec-

tion 4.3.1 is not violated) and by empirical results, its success within

practically reasonable time is not guaranteed.
Considering the results and their discussion in the previous sec-

tion, it becomes clear that the key to obtaining faster results lies

in reducing the number of splits necessary to obtain a valid map.

Hence, for our approach to reach its full potential, the most im-

portant direction for future work is to find alternative yet reliable

ways to make expansion cones star-shaped at a lesser cost in terms

of refinement. Note in particular that our current implementation

performs splits whenever vertices need to be moved in the star-

shapification process. Forms of adaptive refinement, coming into

play only when strictly necessary, appear attractive. Also, more

intelligent forms of vertex relaxation (cf. Section 5.5.2), promoting

well-shaped expansion cones and reducing numerical precision de-

mands, are imaginable. The order of expansion, i.e. the order of

choosing subclusters (cf. Section 5.6), likewise has an effect and

should be investigated further.

Another approach with great potential would be to solve the prob-

lem in a “divide-and-conquer” manner. Instead of favoring small

subclusters, expanding vertices mostly one by one, recursively split-

ting clusters into two subclusters of roughly equal size each time

may offer benefits overall. This will require a different algorithm to

select an expandable subcluster of size around
𝑘
2
from a 𝑘-cluster,

for instance by focusing on finding a sheet of interior faces that split
a cluster into two ball-topology halves.

Finally, while initially shrinking the mesh’s interior to a single

point guarantees a starting point without any inversions, it is not

necessary to go that far. Finding a method to shrink the interior in

a smarter, adaptive way might allow for a huge speedup, especially

for bigger meshes. One could focus on taking an initial interior

map with inversions (coming from some other method) and then

shrinking only subsets of interior vertices to multiple local cluster,

just enough to turn all inverted elements into degenerate ones. This

would already provide a valid starting point for our method.

7 CONCLUSION
In this paper, we introduced a novel framework called Shrink-and-
Expand to find a bijective map from a ball-topology tetrahedral

mesh to a star-shaped target domain, given a boundary map. Aside

from a theoretical limitation, namely its general success depending

on a hard to verify condition, the current specialization into the

Prioritizing Expansion algorithm comes with practical limitations

in terms of efficiency.

Benchmarked on a challenging dataset, it proved to sometimes

yield impractical run times, numerically challenging map distor-

tions, and high amounts of mesh refinement. Additionally, its imple-

mentation is relatively intricate, in particular the star-shapification

algorithm. While this may constitute an impediment to immediate

practical utility, we also reiterate that we consider the framework a

stepping stone for future variants of the method.

Nevertheless, our benchmark provides empirical evidence that,

depending on the scenario, even the current version can already

offer major benefits compared to state-of-the-art alternatives, in

terms of run time as well as time-budgeted success rates, especially

for challenging cases with difficult boundary constraints.
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A SUBCLUSTER EXPANDABILITY CHECK
For a given connected subcluster 𝑆 , we perform a series of checks to

determine whether it is topologically-expandable, ordered from least

costly, necessary conditions, to more costly, ultimately sufficient

conditions. 𝑆 is topologically-expandable if all of these conditions

are met:

(1) 𝐸𝐶 (𝑆) contains at least one tetrahedron.
(2) The Euler characteristic of 𝐸𝐶 (𝑆) is 1.
(3) The Euler characteristic of the base of 𝐸𝐶 (𝑆) is 1.
(4) The Euler characteristic of the mesh spanned by the tips is 1.

(5) All base vertices are 2-manifold within the base.

(6) The base is a single connected component.

(7) All faces of 𝐸𝐶 (𝑆) are incident to at least one tetrahedron.

(8) All tips are 3-manifold within 𝐸𝐶 (𝑆) .

B STAR-SHAPIFICATION ALGORITHMS
Here we go more in-depth into the implementation of the expansion

cone star-shapification, first for trivial subclusters (Algorithm 2),

then for nontrivial subclusters (Algorithm 6). Note that all subrou-

tines operate on the same refinement map𝜓 (thus the same refined

mesh𝑀 ′) and the same map 𝜙 from the vertices of𝑀 ′ to their im-

age position in the domain. Those will be updated by the different

parts of the algorithms, in particular each split operation consists

of updating𝜓 .

Algorithm 2 Star-shapification of the expansion cone of a vertex 𝑡

Input:
𝑡 , a vertex forming a topologically-expandable subcluster {𝑡 }

Output:
𝜙 , updated such that 𝐸𝐶 (𝑡 ) is star-shaped
𝜓 , updated to reflect all splits performed

1: procedure StarShapify(𝑡 )
2: if {t} is simply-expandable then return
3: end if
4: 𝑤 ← base vertex of 𝐸𝐶 (𝑡 ) with highest valence within the base

5: 𝑆𝑆 ← ShellingSeqence(𝑡, 𝑤) (Algorithm 3)

// Refines the base of 𝐸𝐶 (𝑡 ) if necessary, returns a suitable order
6: (𝑀𝑆 , 𝐿𝐶 ) ← CollapseSeqence(𝑡, 𝑆𝑆) (Algorithm 4)

// Moves all cone base vertices (except 𝑤 and its 1-ring) onto

𝜕𝑁1 (𝑤) , without inverting any tetrahedron. 𝐸𝐶 (𝑡 ) now is star-

shaped but partially degenerate.

7: ContractionSeqence(𝑡,𝑀𝑆 , 𝐿𝐶 ) (Algorithm 5)

// Now 𝐸𝐶 (𝑡 ) is star-shaped.
8: end procedure

B.1 Shelling Sequence
As outlined in Section 5.3, the first step of the star-shapification

approach is to determine a sequence, called shelling-sequence (SS),

in which base vertices can be incrementally collapsed outside-in. We

need to maintain ball-topology of the expansion cone throughout

for the process to work.

To perform such a collapse, we need to move a vertex at the

boundary of the base inwards in such a way that all incident spoke

tetrahedra degenerate. This is only possible if the vertex is incident

to at most 2 spoke tetrahedra (at the time of collapsing it) as demon-

strated by Figure 27. To describe the process more easily in the
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Fig. 27. For the cone base above, the first vertex 𝑏0 of the SS (𝑏0 → 𝑏1) has
three incident cells. As such, it is impossible to find a position for 𝑏0 that
would make its three incident cells (here projected to faces) degenerate. At
best, we could move 𝑏0 to the boundary of the red area, only making two of
its incident cells degenerate. Additionally, the next vertex 𝑏1 is now limited
to moving exactly towards 𝑏0 (to keep (𝑏0, 𝑏1, 𝑏2) degenerate), meaning
that its incident cells cannot be degenerated either. Note that while this
is not an issue in itself, it does not fit the assumptions of our specific star-
shapification method.

Fig. 28. A cone base during shelling sequence (SS) determination. The red
edges are part of the trimmed copy and the green ones are part of the
expansion cone but were removed already. (𝑎) The initial expansion cone.
(𝑏) The trimmed copy after removing the first two vertices (𝑏1 → 𝑏0) . Now
we are stuck because all remaining vertices are incident to more than 2
spoke tetrahedra in the trimmed copy. (𝑐) Hence a border edge is split,
here edge (𝑏2, 𝑏3) . (𝑑) This split is then back-propagated through what was
already removed, inducing two more splits on the “coincident” edges. The
trimmed copy is reset to the entire cone. (𝑒) The SS is now (𝑏1 → 𝑏8 →
𝑏0 → 𝑏7 → 𝑏6) and vertex 𝑏2 is now only incident to 2 spoke tetrahedro, i.e.
we can continue. (𝑓 ) The SS is complete as all vertices but those in 𝑁1 (𝑤)
are removed.

following, we imagine that collapsed vertices are actually removed

from the expansion cone, as are their incident edges, triangles, and

tetrahedra. The current remainder of the expansion cone we refer

to as trimmed copy in the course of the process. The boundary of

the base in this trimmed copy is referred to as border. In essence,

border vertices in this trimmed copy need to be removed until only

the 1-ring neighborhood of the picked witness vertex 𝑤 remains.

Algorithm 2 uses the simple heuristic of picking the highest valence

base vertex as𝑤 .

In the rare case that all border vertices in the trimmed copy

have more than 2 incident spoke tetrahedra, we split a border edge

(not entirely contained in 𝑁1 (𝑤)), yielding a mid-vertex that can be

removed next (it has 2 incident spoke tetrahedra by construction); at

the same time, this lowers the numbers of incident spoke tetrahedra

of the adjacent border vertices by 1 each. This can be repeated until

their valence is 2. This ensures we can proceed.

Algorithm 3 Finding a shelling sequence for an expansion cone

Input:
𝑡 , the tip vertex to expand

𝑤, the desired witness vertex of 𝐸𝐶 (𝑡 )
Output: 𝑆𝑆 , a viable shelling sequence

1: procedure ShellingSeqence(𝑡, 𝑤)

2: 𝑆𝑆 ← ∅
3: 𝑆𝑆𝑏 ← ∅
4: 𝑇𝑟𝑖𝑚 ← 𝐸𝐶 (𝑡 ) // trimmed copy.

5: 𝐵 ← 𝐸𝐶 (𝑡 ) \ 𝑁1 (𝑤) // base vertices that are not neighbors of 𝑤.

6: 𝑀𝑖𝑑 ← ∅ // list of mid-vertices created by split back-propagation.

7: 𝐶 ← ∅ // list of candidates to remove. Used to re-do SS after splits.

8: repeat
9: if 𝐶 = ∅ then
10: if 𝑀𝑖𝑑 ≠ ∅ then
11: 𝐶 ← 𝑆𝑆𝑏 ∪𝑀𝑖𝑑

12: 𝑀𝑖𝑑 ← ∅
13: else
14: 𝐶 ← 𝐵 ∩𝑇𝑟𝑖𝑚
15: end if
16: end if
17: Let 𝑏 ∈ 𝐶 be the lowest cell-valence vertex removable from

Trim while maintaining ball-topology

18: if 𝑏 has cell-valence ≤ 2 then
19: Append 𝑏 to 𝑆𝑆

20: Remove 𝑏 from Trim and from𝐶

21: else
22: Find an edge 𝑒 on the boundary of the base of Trim that is

connected to at least one vertex that is not part of 𝑁1 (𝑤)
23: Split 𝑒

24: Back-propagate this split along the dual path on the base

of 𝐸𝐶 (𝑡 ) from 𝑒 to the boundary of the base, following the

current 𝑆𝑆 . Gather all mid-vertices from these splits in𝑀𝑖𝑑

25: 𝑆𝑆𝑏 ← 𝑆𝑆

26: 𝑆𝑆 ← ∅
27: 𝑇𝑟𝑖𝑚 ← 𝐸𝐶 (𝑡 )
28: 𝐶 ← ∅
29: end if
30: until𝑇𝑟𝑖𝑚 = 𝑁1 ( (𝑤, 𝑡 ))
31: end procedure

Of course, splitting a border edge might increase the valence of a

vertex in the already removed part above 2. We thus propagate the

split through the part of the base that is not in the trimmed copy

anymore, splitting all edges that (in the collapsed state) contain the

split point. The SS-so-far is then recomputed on the refined base,

removing vertices in the same order as before but interleaving the

removal of a newly introduced split vertex whenever possible. See

Figure 28 for an example of an SS determination, and Algorithm 3

for the full process.

B.2 Collapse Sequence
Given a shelling sequence, and assuming the mesh was suitably

refined through edge splits as described in Section B.1 to make this

sequence viable, we can now actually modify the map 𝜙 to execute

the collapses, in order to make the expansion cone star-shaped. We

will use the trimmed copy as a helper again. Additionally, to simplify

writing, we will denote the witness vertex as𝑤 and the tip vertex
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Fig. 29. The collapse sequence corresponding to the SS (𝑏0 → 𝑏1 → 𝑏2 →
𝑏3) , shown on a cone base. As usual, the orange arrows show the mid-
vertices’ movement and blue triangles are actually degenerate. (𝑎) We
first collapse 𝑏0 to the face of its incident tet that is not incident to 𝑏0,
i.e. (𝑏1, 𝑏2, 𝑡 ) , with 𝑡 being the tip vertex (not shown here). (𝑏) When the
spoke (𝑏1, 𝑡 ) is split and its mid-vertex 𝑏′

1
is moved to the barycenter of face

(𝑏2, 𝑏3, 𝑡 ) , the previously collapsed vertex 𝑏′
0
is “dragged along” by splitting

its spoke (𝑏′
0
, 𝑡 ) and moving the mid-vertex 𝑏′′

0
to the barycenter of face

(𝑏′
1
, 𝑏2, 𝑡 ) . (𝑐) This is repeated for 𝑏2, and the mid-vertex 𝑏′

3
is moved to

the mid-point of the edge (𝑏4, 𝑡 ) , which is the common edge of its two
non-degenerate incident cells. (𝑑) As a result of the collapse sequence, the
expansion cone is star-shaped, with all cells non-incident to the witness
vertex𝑤 and 𝑡 being collapsed to the boundary of𝑁1 ( (𝑤, 𝑡 )) . All degenerate
cells will be expanded by the contraction sequence (see Section B.3).

as 𝑡 . We encourage the reader to first look at Figure 29 to get a

sense of how a collapse sequence works, with a small but complete

example. For each base vertex 𝑏 of the sequence, we distinguish two

cases, depending on the number of incident cells at the moment of

its deletion from the trimmed copy. If it has only a single incident

cell, we split the spoke (𝑡, 𝑏) and move the mid-vertex 𝑏 ′ to the

barycenter of the one face of that cell that is not incident to 𝑏. This

incident cell is now degenerate (since we employ an exact number

type, as discussed in Section 5.5, this is the case also in practice) and

“embedded” inside this target face. This means that we reduced the

number of faces defining the geometry of the cone boundary, thus

bringing it closer to being star-shaped. Similarly, if there are two

cells incident to 𝑏 at the moment of its removal from the trimmed

copy, the spoke (𝑡, 𝑏) is split as well, but the mid-vertex 𝑏 ′ is moved

to the mid-point of the spoke shared by those two cells that is not

(𝑡, 𝑏). Note that these movements do not cause inversions because

the target point is contained in the mid-vertex’ expansion cone’s

kernel in both cases. Whenever a vertex is collapsed, all vertices

that were collapsed before to an edge or face that is incident to it are

“dragged along”, in a recursive manner, such that the boundary is

always the same as the trimmed copy’s after this vertex was removed

from it. Again, spoke edges are split to make sure the movement is

possible. Algorithm 4 formally defines this stage. As a reminder, this

part of the star-shapification process assumes that all cells inside

the cone are initially non-degenerate, as discussed in Section 5.3.

In the end, 𝐿𝐶 , the Collapse List, contains the list of successive
collapses (𝑏, target), where 𝑏 is the collapsed vertex and target is the
set of vertices of the simplex (face or edge) onto which 𝑏 is collapsed.

𝑀𝑆 , the Split Map, initially maps each vertex to itself and whenever

we perform a split (𝑏, 𝑡) → 𝑏 ′, then𝑀𝑆 (𝑏) = 𝑏 ′.

B.3 Contraction Sequence
Once the collapse sequence has been executed, we have an expan-

sion cone that is star-shaped but contains degenerate tetrahedra.

The third and final stage thus consists of contracting the expansion

Algorithm 4 Collapsing expansion cone vertices following the SS

to make the cone star-shaped (but partially degenerate).

Input: 𝑡, 𝑆𝑆 ,

Output: 𝑀𝑆 , 𝐿𝐶 , the Split Map and the Collapse List.

1: procedure CollapseSeqence(𝑡, 𝑆𝑆)

2: 𝐿𝐶 ← ∅
3: 𝑇𝑟𝑖𝑚 ← 𝐸𝐶 (𝑡 )
4: 𝑀𝑆 (𝑣) ← 𝑣, ∀𝑣 ∈ 𝐸𝐶 (𝑡 )
5: repeat
6: Let 𝑏 be the front of 𝑆𝑆 . Remove 𝑏 from 𝑆𝑆 .

7: Split (𝑏, 𝑡 ) → 𝑏′

8: 𝑀𝑆 (𝑏) ← 𝑏′

// Collapse 𝑏′:
9: if cell-valence of 𝑏 in Trim is 1 then
10: Let (𝑡, 𝑣𝑖 , 𝑣𝑗 , 𝑏) be its only incident cell in Trim.

11: Set 𝜙 (𝑏′) as the barycenter of face (𝑡, 𝑣𝑖 , 𝑣𝑗 ) .
12: Append (𝑏, (𝑡, 𝑣𝑖 , 𝑣𝑗 )) to 𝐿𝐶
13: else if cell-valence of 𝑏 in Trim is 2 then
14: Let (𝑡, 𝑣𝑖 , 𝑣𝑘 , 𝑏) and (𝑡, 𝑣𝑗 , 𝑣𝑘 , 𝑏) be its two incident cells.

15: Set 𝜙 (𝑏′) as the center of edge (𝑡, 𝑣𝑘 ) .
16: Append (𝑏, (𝑡, 𝑣𝑘 )) to 𝐿𝐶
17: end if

// Back-propagate the collapse:

18: for all (𝑢, {𝑢𝑖 }) in 𝐿𝐶 do
19: if 𝑀𝑆 (𝑢𝑖 ) ≠ 𝑢𝑖 for at least one 𝑢𝑖 then
20: Split (𝑢, 𝑡 ) → 𝑢′

21: Set 𝜙 (𝑢′) as the barycenter of {𝑀𝑆 (𝑢𝑖 ) }
22: Replace (𝑢, {𝑢𝑖 }) with (𝑢′, {𝑀𝑆 (𝑢𝑖 ) }) in 𝐿𝐶

23: end if
24: end for
25: Remove 𝑏 from Trim
26: until 𝑆𝑆 = ∅
27: end procedure

cone towards the witness vertex, progressively creating space for

the tetrahedra that were collapsed to recover a positive volume. We

encourage the reader to start with Figure 30 to get an initial grasp

of this subtle stage. We start by contracting each vertex 𝑏 of the core,
i.e. the set of base neighbors of𝑤 , by splitting its spoke edge (𝑏, 𝑡)

Fig. 30. The contraction sequence following the collapse sequence of Figure
29. The first step is to contract the core vertex 𝑐0 of 𝑁1 (𝑤) , onto which
other vertices were collapsed (left). Contracting this vertex makes two cells
incident to𝑏′

3
non-degenerate, giving room for the mid-vertex𝑏′′

3
to contract

towards𝑤. Moving𝑏′′
3
in turn gives room for the vertices that were collapsed

onto faces incident to it. Repeating this in reverse order of the SS successively
expands all initially degenerate cells, while maintaining star-shapedness.
In the end, each mid-vertex 𝑏 (𝑘 )

𝑗
lies on the same triangle (𝑏 𝑗 , 𝑡, 𝑤) , as

suggested by the gray dashed lines.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.



Expansion Cones: A Progressive Volumetric Mapping Framework • 17

Algorithm 5 Contracting a collapsed expansion cone, following

the collapse sequence

Input: 𝑡, 𝑤,𝑀𝑆 , 𝐿𝐶 ,

1: procedure ContractionSeqence(𝑡, 𝑤,𝑀𝑆 , 𝐿𝐶 )

// Core contraction:

2: Let 𝐵𝐶 ⊂ 𝑁1 (𝑤) \ 𝑡 be the set of base vertices such that face

(𝑏, 𝑡, 𝑤) is not a boundary face of 𝐸𝐶 (𝑣)
3: for all 𝑏 ∈ 𝐵𝐶 do
4: Split (𝑏, 𝑡 ) → 𝑏′

5: Set 𝜙 (𝑏′) as the barycenter of (𝑏, 𝑡, 𝑤)
6: end for

// Full contraction:

7: for all collapses (𝑏, target) in 𝐿𝐶 , in reverse order do
8: if � (𝑐, target𝑐 ) ∈ 𝐿𝐶 |𝑏 ∈ target𝑐 then
9: skip 𝑏

10: else
11: split (𝑏, 𝑡 ) → 𝑏′

// Contraction position computation:

12: if target = (𝑡, 𝑣) then
13: Set 𝜙 (𝑏′) as the barycenter of (𝑏, 𝑡,𝑀𝑆 (𝑣))
14: else if target = (𝑡, 𝑣𝑖 , 𝑣𝑗 ) then
15: Compute the intersection between the (non-face) trian-

gle (𝑏, 𝑤, 𝑡 ) and the (face) triangle (𝑣𝑖 , 𝑣𝑗 , 𝑡 ) . With 𝑥

and 𝑦 being the endpoints of this intersection (and ei-

ther 𝑥 = 𝜙 (𝑡 ) or 𝑦 = 𝜙 (𝑡 ))
16: 𝜙 (𝑏′) ← (𝑥 + 𝑦 + 𝜙 (𝑏))/3
17: end if
18: end if
19: end for
20: end procedure

and moving the mid-vertex 𝑏 ′ towards the witness vertex, to the

barycenter of the spoke face (𝑏, 𝑡,𝑤). This creates space for the last
collapsed vertices to move towards the witness vertex, in turn cre-

ating space for the previously collapsed vertices. The key here is to

always contract towards the witness vertex’s spoke edge to ensure

that there is always space for the next vertices to be contracted, and

that the boundary remains star-shaped. The full contraction process

is formally defined by Algorithm 5.

Precision: As in Section 5.5.1, we also here reduce number preci-

sion while maintaining correctness. Instead of moving the newly-

created vertices exactly towards the (𝑡,𝑤) axis, we only enforce

that vertices maintain the proper radial order, as observed at the

end of the collapse sequence. This approach proved efficient, but

does not entirely guarantee a valid result. Hence, we fall-back to

exact contraction in the cases it creates inversions or degeneracies.

C CLUSTER ISOLATION
The formal description of the cluster isolation process is given by

Algorithm 8. Section C.1 provides the foundation.

C.1 Split Vertex Expandability Proof
In this section, we provide a proof that a cluster created by per-

forming splits on multiple coincident edges can always be simply-

expanded, without further refinement. Let us start with a helpful

definition:

Algorithm 6 Star-shapification of the expansion cone of a 𝑘-

subcluster, with 𝑘 > 1

Input:
𝐶 = {𝑡𝑖 }, a topologically-expandable subcluster

Output:
𝜙 , updated such that 𝐸𝐶 (𝐶) is star-shaped
𝜓 , updated to reflect all splits performed

1: procedure StarShapify(𝐶)
2: if {t} is simply-expandable then return
3: end if
4: Let {𝑏 𝑗 } be the base vertices of 𝐸𝐶 (𝐶)
5: Let {𝑓𝑏 } be the base triangles of 𝐸𝐶 (𝐶)

// Simulate:

6: Extract the base of 𝐸𝐶 (𝐶) as a separate mesh, denoted 𝐸𝐶𝑠

7: Add a new isolated tip vertex 𝑡 to 𝐸𝐶𝑠

8: For all faces 𝑓𝑏 of 𝐸𝐶𝑠 , add a new cell (𝑓𝑏 , 𝑡 ) to 𝐸𝐶𝑠 // 𝐸𝐶𝑠 is thus

a single-tip version of the original 𝐸𝐶 (𝐶) .
9: StarShapify(𝑡 ) // applied to 𝐸𝐶𝑠

// Duplicate splits:

10: Let 𝐿 = {(𝑎,𝑏) → 𝑐 } be the list of splits performed on 𝐸𝐶𝑠

11: Let 𝜙𝑠 be the map resulting from star-shapification of 𝐸𝐶𝑠 )

12: Let Dupl (𝑣) be a (vertex→ set of vertices) map

13: Dupl (𝑏 𝑗 ) ← 𝑏 𝑗 for all base vertices and

14: Dupl (𝑣) ← ∅ for all other vertices

15: 𝑋 ← ∅
16: for all split 𝑠 ∈ 𝐿 do
17: if 𝑠 = (𝑏𝑖 , 𝑏 𝑗 ) → 𝑏𝑘 was done on the base then
18: split (𝑏𝑖 , 𝑏 𝑗 )
19: 𝜙 (𝑏𝑘 ) ← 𝜙𝑠 (𝑏𝑘 )
20: else
21: Then 𝑠 = (𝑏𝑘

𝑗
, 𝑡 ) → 𝑏𝑘+1

𝑗
, with 𝑏𝑘

𝑗
being the vertex obtained

after the 𝑘-th split of the edge (𝑏 𝑗 , 𝑡 ) ∈ 𝐸𝐶𝑠 (𝐶) (and 𝑏0

𝑗
=

𝑏 𝑗 ) and with Dupl (𝑏𝑘
𝑗
) → {𝑏𝑘

𝑗,𝑚
}

22: for all edges (𝑏𝑘
𝑗,𝑚

, 𝑡𝑖 ) ∈ 𝑀′ do
23: split (𝑏𝑘

𝑗,𝑚
, 𝑡𝑖 ) → 𝑏𝑘+1

𝑗,𝑛

24: add 𝑏𝑘+1
𝑗,𝑛

to Dupl (𝑏𝑘+1
𝑗
)

// 𝑏𝑘
𝑗,𝑚

is the𝑚-th duplicate of the vertex obtained by

performing the 𝑘-th split of an edge connecting the 𝑗-th

base vertex and one of the tip vertices.

25: append 𝑏𝑘+1
𝑗,𝑛

to 𝑋

26: end for
27: Set 𝜙 (𝑣) = 𝜙𝑠 (𝑏𝑘+1𝑗

), ∀𝑣 ∈ Dupl (𝑏𝑘+1
𝑗
) .

28: end if
29: end for
30: ExpandDuplicates(𝑋 ) (Algorithm 7)

31: end procedure

Definition C.1 (Wedge). For an edge 𝑒 = (𝑣𝑎, 𝑣𝑏 ), we define its
wedge𝑊 (𝑒) as the submesh consisting of all non-degenerate cells

incident to 𝑒 . We call it a proper wedge if it contains exactly two

boundary faces incident to 𝑒 .

𝑎, 𝑏 ∈ R3
will refer to the positions of 𝑣𝑎 and 𝑣𝑏 , and [𝑎 : 𝑏] is the

line segment from 𝑎 to 𝑏. We will write 𝐾𝑒𝑟 (𝑆) for the kernel of a
subset 𝑆 ⊂ R3

.

Lemma 1. For an edge 𝑒 = (𝑣𝑎, 𝑣𝑏 ), if wedge𝑊 (𝑒) is proper, then
it is star-shaped.
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Algorithm7 Expansion of the duplicate mid-vertices created during

nontrivial subcluster star-shapification (Algorithm 6)

Input:
𝑋 , the list of duplicate mid-vertices to expand

Output:
𝜙 , updated such that vertices in 𝑋 are expanded

1: procedure ExpandDuplicates(𝑋 )

2: 𝜙init (𝑣) ← 𝜙 (𝑣), ∀𝑣 ∈ 𝑋
3: 𝑋 ′ ← randomly ordered list of 𝑋

4: 𝜙 (𝑣) ← 𝜙init (𝑣), ∀𝑣 ∈ 𝑋 // reset to initial positions

5: repeat
6: Pick the first vertex 𝑣 ∈ 𝑋 ′ that is simply-expandable.

7: If there is none, goto 3

8: Set 𝜙 (𝑣) as the center of the kernel of 𝑁1 (𝑣) .
9: 𝑋 ′ = 𝑋 ′ \ 𝑣.
10: until 𝑋 ′ = ∅
11: end procedure

Algorithm8 Isolation of two clusters that were split apart, to ensure
that the boundaries of their submeshes contain no degenerate faces

Input:
𝐶𝑎 and𝐶𝑏 , two clusters with at least two edges connecting𝐶𝑎 and𝐶𝑏

Output:
𝜙 , updated such that 𝜕𝑆𝑢𝑏𝑚𝑒𝑠ℎ (𝐶𝑎/𝐶𝑏 ) contain no degenerate faces

𝜓 , updated to reflect all splits performed

1: procedure Isolate(𝐶𝑎,𝐶𝑏 )

2: Let 𝐸𝑎𝑏 be the set of edges (𝑣𝑖 , 𝑣𝑗 ) such that 𝑣𝑖 ∈ 𝐶𝑎 and 𝑣𝑗 ∈ 𝐶𝑏

3: repeat
4: Pick 𝑒 ∈ 𝐸𝑎𝑏 such that the submesh consisting of all cells inci-

dent to 𝑒 is star-shaped (exists, see Appendix C.1)

5: Split 𝑒 → 𝑣

6: Set 𝜙 (𝑣) as a center of 𝑁1 (𝑣)
7: 𝐸𝑎𝑏 ← 𝐸𝑎𝑏\𝑒
8: until 𝐸𝑎𝑏 = ∅
9: end procedure

Proof. By construction, [𝑎 : 𝑏] ⊆ 𝐾𝑒𝑟 (𝑊 (𝑒)). Then, the only
way for 𝐾𝑒𝑟 (𝑊 (𝑒)) = [𝑎 : 𝑏] to be true, is for it to be defined by at

least three halfspaces intersecting [𝑎 : 𝑏]. However, by construction,
𝐾𝑒𝑟 (𝑊 (𝑒)) is defined as the intersection of two boundary faces

incident to [𝑎 : 𝑏] and an arbitrary number of faces 𝑓𝑘 . Since all

faces 𝑓𝑘 are either (𝑣𝑎, 𝑣𝑖 , 𝑣 𝑗 ) or (𝑣𝑏 , 𝑣𝑖 , 𝑣 𝑗 ), with 𝑣𝑖 , 𝑣 𝑗 ≠ 𝑣𝑎 and

𝑣𝑖 , 𝑣 𝑗 ≠ 𝑣𝑏 and no two vertices can be coincident (by construction),

the two boundary faces of𝑊 (𝑒) that are incident to 𝑒 define the
only halfspaces intersecting at [𝑎 : 𝑏] and thus𝐾𝑒𝑟 (𝑊 (𝑒)) ≠ [𝑎 : 𝑏].
Finally, since the intersection of a finite number of halfspaces is

either convex or empty, and since𝑊 (𝑒) is not empty by construction,

there must be a point 𝑥 ∉ [𝑎 : 𝑏] such that 𝑥 ∈ 𝐾𝑒𝑟 (𝑊 (𝑒)) and
𝑊 (𝑒) is thus star-shaped. □

Now consider two distinct clusters 𝐶𝑎 and 𝐶𝑏 such that |𝐶𝑎 | >
0, |𝐶𝑏 | > 0 and |𝐸𝑎𝑏 | > 0 for the set of edges 𝐸𝑎𝑏 = {(𝑣𝑖 , 𝑣 𝑗 |
𝑣𝑖 ∈ 𝐶𝑎, 𝑣 𝑗 ∈ 𝐶𝑏 }. The submesh consisting of the union of 1-ring

neighborhoods of all these coincident edges clearly has ball-topology.

Now, let us assume that all edges 𝑒𝑖, 𝑗 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸𝑎𝑏 were split,

creating a cluster of mid-vertices 𝑉𝑎𝑏 = {𝑣𝑖, 𝑗 }. Since 𝑁1 (𝑣𝑖, 𝑗 ) is
geometrically and topologically equivalent to𝑁1 (𝑒𝑖, 𝑗 ), we can define

Fig. 31. Left: the union of the 1-ring neighborhoods of all edges connecting
clusters𝐶𝑎 and𝐶𝑏 is a ball-topology, star-shaped mesh. Middle: by splitting
all cluster-connecting edges, we obtain a disc-topology triangle mesh called
the mid-surface (blue triangles are degenerate). Right: finding a mid-vertex
whose non-degenerate 1-ring neighborhood is ball-topology is equivalent
to finding an interior vertex of the mid-surface whose non-degenerate 1-
ring neighborhood is disc-topology. Here, vertices 𝑣0 and 𝑣3 are Type 2 and
vertices 𝑣1 and 𝑣2 are Type 3. Our proof is based on showing that there
always exists at least one Type 2 vertex.

the wedge𝑊 (𝑣𝑖, 𝑗 ) of a mid-vertex, for which Lemma 1 holds (by

construction).

Lemma 2. For a set of edges 𝐸𝑎𝑏 as defined above, if all edges are
split there exists a vertex 𝑣 ∈ 𝑉𝑎𝑏 such that its wedge𝑊 (𝑣) is proper.

Proof. We can transform the problem into a 2D one, by taking

𝑆𝑢𝑏𝑚𝑒𝑠ℎ(𝐶𝑎)∩𝑆𝑢𝑏𝑚𝑒𝑠ℎ(𝐶𝑏 ) and removing all simplices incident to

either a vertex of 𝐶𝑎 or 𝐶𝑏 . The result is a submesh consisting of all

simplices incident to at least one vertex of 𝑉𝑎𝑏 , i.e. a disc-topology

surface mesh (see Figure 31). We will call this submesh the mid-
surface and denote it as𝑀𝑖𝑑𝑎𝑏 . By construction, the interior vertices
of𝑀𝑖𝑑𝑎𝑏 are the simply-connected mid-vertices𝑉𝑎𝑏 . We distinguish

four types of interior vertices depending on their neighborhood in

𝑀𝑖𝑑𝑎𝑏 :

Type 0 have only interior neighbors (→ their wedge is empty).

Type 1 have a single boundary neighbor (→ their wedge is empty).

Type 2 incident to a single fan of triangles (→ their wedge is proper).

Type 3 incident to multiple, disconnected fans of triangles and/or

boundary vertices (→ their wedge is not proper).

We show that there always exists a Type 2 vertex in 𝑀𝑖𝑑𝑎𝑏 . First,

there cannot be only Type 3 vertices, because each of them is con-

nected to multiple disconnected parts of the boundary. This means

that there must be at least another boundary vertex between two

of its incident components, implying that there must be a Type 1

or Type 2 vertex. Furthermore, since there must be at least one

non-degenerate face between two non-degenerate components of

a Type 3 vertex, it implies that there must be at least one Type 2

vertex. □

Hence, starting from the initial set of mid-vertices between𝐶𝑎 and

𝐶𝑏 , we can find one with a proper wedge and therefore expand it by

moving it to a point inside the kernel of the wedge. This operation

can then be repeated until all vertices of 𝑉𝑎𝑏 have been moved.

Note that the 2D expansion problem underlying this argument is

conceptually close to the second step of Shen et al. [2019], the differ-

ence being that in their case an expansion order is predetermined

as a reverse collapse sequence.
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