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Fig. 1. Given a ball-topology tetrahedral mesh (left) and star-shaped boundary constraints, we generate a bijective piecewise linear map for the interior (right).
We improve the recent Shrink-and-Expand approach [Nigolian et al. 2023], which relies on a two-step process. During the first shrinkage step, all interior
vertices are clustered to a single focal point, degenerating most tetrahedral elements. In the second expansion step, interior vertices (blue) are successively
detached from the cluster while ensuring that tetrahedra formed by expanded vertices are strictly positively oriented (orange). We introduce the concept of
the cluster mesh (red), motivated by the observation that its topology provides all information necessary to efficiently determine a viable expansion sequence.

We present a novel algorithm to map ball-topology tetrahedral meshes onto

star-shaped domains with guarantees regarding bijectivity. Our algorithm is

based on the recently introduced idea of Shrink-and-Expand, where images

of interior vertices are initially clustered at one point (Shrink-), before being

sequentially moved to non-degenerate positions yielding a bijective map

(-and-Expand). In this context, we introduce the concept of the cluster mesh,
i.e. the unexpanded interior mesh consisting of geometrically degenerate

simplices. Using local, per-vertex connectivity information solely from the

cluster mesh, we show that a viable expansion sequence guaranteed to

produce a bijective map can always be found as long as the mesh is shellable.
In addition to robustness guarantees for this ubiquitous class of inputs,

other practically relevant benefits include improved parsimony and reduced

algorithmic complexity. While inheriting some of the worst-case high run

time requirements of the state of the art, significant acceleration for the

average case is experimentally demonstrated.
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1 INTRODUCTION
In the context of geometry processing, a common problem is to find

a bijective map between two domains. The resulting pointwise cor-

respondences are beneficial for a variety of applications, including

for instance texture mapping [Koniaris et al. 2014], mesh genera-

tion [Pietroni et al. 2022] and many more. Specifically important

are piecewise linear (PL) maps represented by a tetrahedral mesh

equipped with vertex positions for source and target domain. These

are bijective if and only if there are no inverted or

degenerate tetrahedra, and no self-intersections. The

figure on the right illustrates a 2D example, where

a pentagonal source domain is bijectively mapped

onto a square target domain, defined by the blue pre-

scribed boundary edges. Unfortunately, in three di-

mensions, generating such bijective maps for tetra-

hedral meshes of arbitrary topology and subject to

general non-convex boundary constraints is still an open problem.

In this work, we target the setting of mapping ball-topology source

ACM Trans. Graph., Vol. 43, No. 6, Article 170. Publication date: December 2024.

HTTPS://ORCID.ORG/0000-0001-5239-1507
HTTPS://ORCID.ORG/0000-0003-2340-3462
HTTPS://ORCID.ORG/0000-0002-3190-1341
https://orcid.org/0000-0001-5239-1507
https://orcid.org/0000-0003-2340-3462
https://orcid.org/0000-0002-3190-1341
https://doi.org/10.1145/3687992
https://doi.org/10.1145/3687992


170:2 • Valentin Z. Nigolian, Marcel Campen, and David Bommes

meshes to star-shaped target domains, defined by prescribed lo-

cations for their boundary vertices. Please note that aside from

star-shapedness and non-degeneracy, there are no other require-

ments on the boundary constraints, particularly no restrictions in

terms of distortion. Several key requirements are essential for the

practical relevance of a mapping algorithm:

(R1) Robustness. It is essential that for each valid input, consisting

of a source tetrahedral mesh and target boundary vertex positions, a

valid bijective piecewise linear map is generated. The ultimate goal

is provable robustness for a well-defined and broad set of inputs.

(R2) Run Time. Efficiency and scalability are crucial for practical

applications. Please note that provable robustness alone is of limited

value if the actual wall-clock run time is prohibitively large.

(R3) Parsimony. Depending on the boundary constraints, mesh

refinement is sometimes inevitable to warrant the existence of a

bijective map. The goal of parsimony consists in minimizing the

number of additional vertices, typically also key to bound run time.

(R4) Precision. Maps are often a single component of a larger

system, where typically the other components operate with standard

floating-point number types. Consequently, a common requirement

is the ability to find a map that remains valid after truncating vertex

coordinates to IEEE 754 double precision.

(R5) Distortion. For a given source domain and boundary con-

straints, there exist infinitelymany bijectivemaps. The common goal

is to find a low-distortion map w.r.t. some application-dependent

distortion metric. Please note that in practice it is often sufficient to

find any bijective map, which gives rise to a low-distortion map via

subsequent optimization while preserving bijectivity, e.g. through

barrier distortion energies combined with line search.

Our progressive embedding approach is based on the idea of

Shrink-and-Expand (SaE), which has been introduced in [Nigolian

et al. 2023]. We will first briefly summarize all important concepts

of SaE before explaining the critical limitations of the original algo-

rithm, directly motivating our key improvements.

(𝑎) (𝑏) (𝑐) (𝑑)
Fig. 2. A 2D overview of the core concept of the SaE framework that our
work improves upon. (𝑎) a ball-topology mesh with three interior vertices.
(𝑏 ) boundary vertices’ prescribed positions (blue) give a star-shaped target
domain. Interior vertices are initially coincident, degenerating some of the
elements. In (𝑐 ) and (𝑑 ) interior vertices are sequentially detached to
positions yielding non-degenerate elements.

Shrink-and-Expand (SaE). Given a ball-topology mesh and non-

degenerate, star-shaped prescribed boundary positions, SaE starts

with the initialization of positions for interior vertices, allowing

degenerate tetrahedra due to edges of zero length, but ensuring

that there are no inverted tetrahedra. This first part of SaE consists

in geometrically shrinking interior edges to zero length, however,

without making any topological modifications to the mesh. The

star-shapedness of the target domain warrants the existence of an

interior point 𝑝𝑐 that forms positively oriented tetrahedra with all

boundary triangles. Consequently, an initialization without inverted

tetrahedra is trivially constructed by shrinking all edges between

interior vertices to 𝑝𝑐 . The second part of SaE consists in sequen-

tially resolving degenerate elements by displacing vertices in order

to expand their incident tetrahedra without ever creating inversions

or novel degeneracies. The expandability of a vertex, i.e. the abil-

ity to displace the vertex without creating inverted or degenerate

elements, depends on topological as well as geometric conditions,

requiring the so-called expansion cone to be ball-topology and geo-

metrically star-shaped. Luckily, the geometric conditions can always

be satisfied through a robust star-shapification process, however,

potentially at the cost of mesh refinement via edge splits. In each

iteration of the expansion phase, the algorithm first determines a

single vertex (or sometimes a subset of vertices) that satisfies the

topological conditions, then ensures the geometric conditions, and

finally expands some degenerate tetrahedra. Figure 2 gives a brief

overview of the core steps of SaE in 2D.

Limitations of [Nigolian et al. 2023] . To obtain robustness in the

sense of (R1), SaE depends on a viable expansion sequence, i.e. ex-

istence of at least one expandable vertex (or subcluster) in each

iteration. While the original SaE approach [Nigolian et al. 2023]

demonstrated exceptional robustness for a large and challenging

dataset of inputs, the theoretical question of the existence of a vi-

able expansion sequence remained open. Specifically, the existence

of such a sequence could not be verified for the 23.38% of inputs

where the time limit of 12h was reached. This major computational

obstacle results from the combinatorial complexity of potentially ex-

ploring all 2
𝑛
subsets of vertices of an unexpanded set of 𝑛 vertices.

Moreover, the evaluation revealed cases of suboptimal behavior

w.r.t. parsimony (R3), and, precision (R4), often resulting from exces-

sive mesh refinement and precision blow-up of rational numbers.

Contributions. To overcome the theoretical limitations of [Nigo-

lian et al. 2023], we introduce the concept of the cluster mesh, con-
sisting of all interior simplices with coincident vertices. In Sec. 3.2,

we show that a simple topological condition ensures the expand-

ability of a cluster mesh vertex, which only depends on its 1-ring

neighborhood within the cluster mesh. Most importantly, a viable

expansion sequence can be guaranteed as long as the tetrahedral

mesh is shellable – not even requiring the subcluster expansion of

[Nigolian et al. 2023]. For non-shellable meshes, however, our algo-

rithm might fail if the cluster mesh turns into a NOBUENOSS, i.e. a

simply connected (non-pure) surface with Euler characteristic 1 that

has no boundary, yet does not separate space, cf. Sec. 4.1. Note that

such cases are detected on the fly during expansion, without any ad-

ditional cost. Despite extensive experiments, we did not encounter

such a pathological case in practice. We provide a manually designed

example in Sec. 4.1, in the hope that, based on our characterization,

future work will be able to extend guarantees to arbitrary non-

shellable inputs. Another practically relevant effect of the cluster

mesh perspective is that the cost of checking expandability is strictly
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bounded by the input mesh and thus independent of on-the-fly re-

finement. The cost solely depends on the size of the 1-ring neigh-

borhood within the cluster mesh, which never grows since the algo-

rithm only performs edge splits outside the cluster mesh. In contrast,

the cost of checking expandability with the help of expansion cones,

as done in [Nigolian et al. 2023], grows due to mesh refinement

and thus might even become a critical bottleneck. While the cluster

mesh perspective allows our algorithm to satisfy the requirement of

robustness (R1), we additionally demonstrate, in Sec. 5, significant

improvements w.r.t. run time (R2), parsimony (R3), and precision

(R4). These are related to a novel inflation process that enables a

larger number of expansion candidates (Sec. 3.1), an on-the-fly preci-

sion truncation heuristic (Sec. 4.2.3), and a Chebyshev-center-driven

geometric position optimization (Sec. 4.2.7). Specifically, the perfor-

mance increase allows our method to reduce the number of maps

that cannot be generated within 6 hours to 4.2%, compared to 23.8%

of [Nigolian et al. 2023]. The code of our implementation is publicly

available at https://www.algohex.eu/publications/cluster-mesh-sae.

2 RELATED WORK
Through the literature, maps are constructed in various ways, gen-

erally in terms of what class of objects they can handle, what type of

target domain those can be mapped to, and the approach they take

to do so. Some techniques are restricted to ball-topology meshes

[Campen et al. 2016], while others accept meshes of any genus as

input [Du et al. 2020; Garanzha et al. 2021]. Mapping methods can be

limited to specific output shapes (e.g. convex), and not all are com-

patible with per-vertex prescribed positions [Campen et al. 2016].

While some applications of volumetric maps allow some tolerance

regarding boundary constraints satisfaction (e.g. deformation or

shape correspondence), the satisfaction of exact boundary condi-

tions is an absolute necessity for others, like parameterization or

hexahedral meshing [Brückler and Campen 2023; Brückler et al.

2022a,b]. Moreover, meshes of arbitrary genus can be decomposed

into ball-topology “blocks”, which are individually mapped and

then recomposed into a global atlas. To enforce boundary corre-

spondence between neighboring blocks in the target domain (which

is not guaranteed in general), one can use a seamless map. These im-

ply boundary conditions that need to be satisfied exactly, ensuring

pointwise consistency on the interfaces between blocks. This is a

well-studied problem, with related work in 2D [Campen et al. 2019;

Levi 2021; Zhou et al. 2020], as well as in 3D [Liu and Bommes 2023;

Nieser et al. 2011]. In an orthogonal yet complementary fashion,

one can generate a map between arbitrary shapes by composing
maps between these shapes and a common target domain [Kanai

et al. 1997; Lipman and Funkhouser 2009; Schmidt et al. 2019, 2020;

Weber and Zorin 2014]. In this context, robustly generating maps,

even in our restricted setting, is an essential component of general

tetrahedral maps. We refer to [Cherchi and Livesu 2023] for further

review of the numerous applications of volumetric maps, such as

solid texturing or volume registration.

2.1 Optimization-Based Tetrahedral Maps
Many mapping techniques involve minimizing per-element distor-

tion, meaning that the elements’ shapes should be as close as possible

in both initial and target domains (R5). This change of shape is eval-

uated using a so-called energy function, which serves as an objective

function for optimization problems; minimizing the energy thus

minimizes the distortion. We also refer to meta-optimization tech-

niques [Abulnaga et al. 2023; Poya et al. 2023], which describe sym-

metrization, respectively regularization methods for pre-existing

distortion energies. Regardless of their efficiency (R2) and suitability

for practical usage (R4), optimization-based methods generally lack

guarantees of success in generating bijective maps (R1), unless they

are already initialized with a bijective solution. Preservation of bi-

jectivity can be ensured by a barrier term in the objective function,

letting line search schemes detect invalid elements in the form of

infinite energy. A typical use case is for deformation [Fang et al.

2021; Jiang et al. 2017], where a “rest” mesh is modified through

small, incremental displacements. The incrementality here helps in

preserving bijectivity throughout this sequence of target domains.

Conversely, some of these techniques, often referred to as untan-
gling methods, can be initialized in a non-bijective way, and then

attempt to obtain bijectivity through optimization. Notable and re-

cent examples of such techniques, in which the target domain is

prescribed in a per-vertex manner, include [Aigerman and Lipman

2013; Du et al. 2020; Garanzha et al. 2021; Su et al. 2019].

The importance of robust methods (R1) is verified by the ubiquity

of the Tutte embeddings [Tutte 1963], which are guaranteed to pro-

duce valid 2D bijective maps for convex target domains. Those are

generally poor in quality, yet their theoretical guarantees are lever-

aged by functioning as initializers for optimization-based methods,

as mentioned above. Unfortunately, the Tutte embeddings lose their

guarantees of bijectivity when applied to tetrahedral meshes [Alexa

2023].

2.2 Tetrahedral Maps with Guarantees
With Tutte’s method not being applicable to the 3D realm, re-

searchers have explored other robust approaches, some with promis-

ing results [Livesu 2020]. Robust methods are also being developed

in 2D, e.g. with the Advancing Front method from Livesu [2024] or

the Progressive Embeddings from Shen et al. [2019], for their strong

guarantees, but also with the goal of extension to tetrahedral maps.

However, tetrahedral meshes bring a geometric complexity that

breaks critical assumptions of these methods. Specifically, in the

context of Shen et al. [2019], the local mesh operation called “vertex

split” is only guaranteed to be feasible under certain geometric con-

ditions, which are (trivially) met in 2D but not in 3D. Nonetheless,

Nigolian et al. [2023] succeeded in providing guarantees that hold

in 3D. A key limitation of this work, as discussed in Section 1, is

that the class of inputs it can handle is not well-understood. Indeed,

one of their components performs a combinatorial exploration of

subsets of vertices, which is deemed to have failed if no subset with

specific properties can be found. Only in this case can a mesh be

classified as an invalid input for this method. Unfortunately, even

a relatively small number of vertices in the input mesh makes an

exhaustive search of all subsets practically infeasible. It is therefore

highly impractical to decide whether a specific input mesh is theo-

retically impossible to map with this method or if it would simply

take an extended period of time.
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Another approach with theoretical guarantees is [Campen et al.

2016], which generates continuous foliation maps. These are then

converted into PL maps at the cost of sometimes extreme refinement.

Hinderink and Campen [2023] extend foliation maps to star-shaped

domains. Furthermore, for efficiency, they propose the local applica-

tion of foliation maps to star-shaped subregions of the target domain

(called stars), each encompassing flipped elements generated by an

initial map (e.g. Tutte embedding). We note here that our method

could be used as a drop-in replacement to individually handle these

stars, considering that the setting fits the requirements of the SaE

framework (ball-topology input, star-shaped prescribed boundary).

2.3 Refinement & Representation
One key observation regarding robust methods is that, contrary to

their optimization-based counterparts, they generally heavily rely

on punctual connectivity modifications. Indeed, most optimization-

based methods do not include the connectivity of the input as a

degree of freedom. Notable counterexamples include [Ferguson

et al. 2023] in 3D and [Campen et al. 2021; Gillespie et al. 2021; Jin

et al. 2014] in 2D, although these works differ from ours in their

setting (in particular, non-prescribed boundary maps). Note that

on-demand remeshing has also been leveraged for adaptive physi-

cal simulations [Anderson et al. 2005; Wicke et al. 2010]. Another

advantage of robust methods is their compatibility with any numer-

ical representation for their computations. While fixed-precision

floating-point is the assumed standard for most applications, it is

well-known that it can lead to issues, even for basic geometric pred-

icates, e.g. triangle orientation. Seminal works, such as Shewchuk’s

predicates [Shewchuk 1997], show that great care has to be taken

when dealing with such representation. In fact, even theoretically

robust algorithms, such as the Tutte embeddings or Delaunay re-

finement, are known to be prone to failure when implemented with

standard floating-point arithmetic [Finnendahl et al. 2023; Shen et al.

2019; Shewchuk 2002]. A common alternative is to represent (at least

rational) numbers exactly, as fractions, with both numerator and

denominator being integers of arbitrary size. A popular implemen-

tation for such rational-based representation is CGAL’s GMPQ type
[Fabri and Pion 2009], itself based on the GNUMultiPrecision (GMP)

library. Relying on exact representations additionally resolves the

sensitivity to almost degenerate states, e.g. those related to the geo-

metric quality of the prescribed boundary conditions. The problem

of recovering a floating-point-compatible result from the output of

rational-based methods (e.g. to enable its use in floating-point-based

downstream applications) is called snap rounding and is a notori-

ously difficult problem [Devillers et al. 2018], directly related to our

precision requirement (R4).

3 CLUSTER MESHES
We first review some of the concepts used by SaE, before introducing

original key concepts of our method.

Expanded/Unexpanded Vertices: We split vertices into two sets:

the expanded vertices, denoted as 𝑉 ◦, and the unexpanded vertices,

denoted as 𝑉 •. Initially, the expanded vertices are the boundary

vertices, and the unexpanded vertices are the (coincident) interior

vertices. As is the case for SaE, our goal will be to expand vertices

by moving them to a position inside the kernel of their 1-ring neigh-

borhood. This requires their 1-ring neighborhood to have certain

properties, as discussed later in this section. Once a vertex has been

expanded, the 𝑉 • and 𝑉 ◦ sets are updated accordingly.

𝑀◦

𝑀•
Cluster Mesh: We call the set of simplices con-

sisting of only expanded vertices the expanded
mesh and denote it as 𝑀◦. Similarly, the set of

simplices consisting of only unexpanded vertices

is called the unexpanded mesh, denoted as 𝑀•.
The figure on the right shows a 2D example, with

the expanded mesh in green and the unexpanded mesh in magenta.

Unexpanded vertices are shown as filled discs while expanded ver-

tices are hollow to match the notation. Note that the unexpanded

vertices geometrically coincide; we only explode them for visualiza-

tion. Since all simplices of the unexpanded mesh form a cluster, we

call it the cluster mesh. Note that𝑀◦ ∪𝑀• ≠ 𝑀 , as some simplices

have vertices in both sets. The cluster mesh will not, in general, be

a pure simplicial complex. i.e. faces might be incident to no tetra-

hedron, and edges might be incident to no face. We do, however,

require it to be simply connected. This, in addition to being the

interior of a ball-topology mesh, implies its Euler characteristic to

be that of a ball, i.e. 1. These properties bring a conceptual simplicity

and are naturally maintained throughout the expansion process,

as described in Sec. 3.2. Note that the cluster mesh consists of at

least two vertices; expanding the second-last vertex automatically

expands the last one. All incident simplices will already be posi-

tively oriented by construction. The cluster mesh represents the

cornerstone of our novel approach, as we will only use its local

connectivity information to check which vertices can be expanded.

Degenerate Simplices: An edge is geometrically degenerate if the

positions of both vertices are identical. Similarly, a triangle is degen-

erate if all three vertices are collinear, and a tetrahedron is degener-

ate if all four vertices are coplanar. However, in the SaE framework,

the only tolerated subset of geometric degeneracies are those caused

by coincident (unexpanded) vertices, i.e. a degenerate simplex is

always incident to an edge of zero length.

Stars, Closures & Links: Let us first recall standard mesh topol-

ogy terms. First, the star of a vertex 𝑣 , St(𝑣), is the set of sim-

plices incident to 𝑣 in a given mesh. The closure of 𝑣 , Cl(𝑣) is the
set of all vertices, edges, faces, and cells of St(𝑣), including those

not incident to 𝑣 . Finally, the link of 𝑣 , Lk(𝑣), is the set of sim-

plices of the closure of 𝑣 that are not incident to 𝑣 . Intuitively,

St(𝑣) ∩ Lk(𝑣) = ∅ and Cl(𝑣) = St(𝑣) ∪ Lk(𝑣). The figure below

shows how those definitions can be extended to the expanded and

cluster mesh. The expanded star St◦ (𝑣) is the set of non-degenerate
simplices incident to 𝑣 (which is their only unexpanded vertex).

The unexpanded star St
• (𝑣) is the set of sim-

plices incident to 𝑣 whose vertices are all coin-

cident. Note that 𝑣 itself is part of both St
• (𝑣)

and St
◦ (𝑣). On the left drawing, the coincident

(unexpanded) vertices are drawn in purple, in-

cluding 𝑣 in blue. The degenerate simplices, i.e.

the unexpanded star, are drawn in pink, while the expanded star

is drawn in orange. Then, the expanded and unexpanded links of
𝑣 , Lk◦ (𝑣) and Lk

• (𝑣), are drawn in red and purple, respectively, on

the inline drawing. Figure 3 illustrates those concepts in 3D.
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𝑣

Fig. 3. A mesh cutout, with the large blue vertex 𝑣 in focus. We see its
expanded star St◦ (𝑣) in orange and expanded link Lk◦ (𝑣) in red, along with
its unexpanded star St• (𝑣) in pink and unexpanded link Lk• (𝑣) in purple. The
expanded star and link together form the expansion cone of 𝑣. Unexpanded
stars and links are coincident in our method but are shown non-degenerate
here for visualization only.

3.1 Vertex Expandability
Let us now use those definitions to identify candidate vertices for

expansion. In general, a vertex is expandable if it can be geometri-

cally detached from the cluster mesh to a position that decreases the

number of degenerate elements, without creating any inverted ones.

This requires its expanded star to be star-shaped. As a reminder, we

say that a domain is star-shaped if its kernel has non-zero volume.

The kernel of a domain is the set of guards of the domain, points

that are visible from any other point inside the domain. We first

introduce a topological necessary condition for star-shapedness.

Topological Expandability: The expanded closure of a vertex 𝑣 is

called its expansion cone EC(𝑣) in [Nigolian et al. 2023], and we will

use the same terminology in this paper. In addition, this work defines

a vertex to be topologically-expandable if its expansion cone is ball-

topology and the base of its cone (the expanded link in our setting)

is disc-topology. Expansion cones that are not 3-manifolds (with

boundary) thus do not fit this expandability criterion. The reasoning

is that the kernel of such cases would necessarily have zero volume,

preventing the expansion of the corresponding vertex. Since we are

only considering single vertices for expansion, and not subclusters,

checking the cone base is sufficient; it being disc-topology necessar-

ily implies that the cone is ball-topology. Moreover, we extend the

definition of a topologically-expandable vertex to “a vertex whose ex-
pansion cone base is simply connected”. Since a (non-pure) triangle

mesh with boundary is simply connected if and only if it is a single

connected component and Euler characteristic 1, we have that a

vertex is topologically-expandable if and only if 𝜒 (Lk◦ (𝑣)) = 1 and

𝑏0 (Lk◦ (𝑣)) = 1, where 𝑏0 (𝑆) is the 0th Betti number, i.e. the number

of connected components.

Expansion Cone Inflation: Updating our definition of topolog-

ical expandability to a larger class of expansion cones is made

possible with a new local operation called inflation. If an expan-

sion cone’s base is not disc-topology, it necessarily means that one

of its vertices is incident to multiple disconnected triangle fans,

or none at all. An analogous situation in a 2D expansion cone

(1D base) would be a vertex with a single edge, as shown in the

inline figure below. Vertex 𝑣 has a single vertex 𝑏0 in its expan-

sion cone’s base and therefore has no space to expand. Again, the

𝑏

𝑐0

𝑐1

𝑏

𝑐0

𝑐1

Fig. 4. A simple example of the inflation operation. Left: the blue vertex’s
expansion is non-manifold at vertex 𝑏, thus collapsing its kernel to a single
edge. In [Nigolian et al. 2023], the blue vertex would not be considered to
be topologically-expandable. Right: by splitting all edges (𝑏, 𝑐𝑖 ) , where 𝑐𝑖 is
any unexpanded vertex, the base of the expansion cone is now disc-topology
and thus expandable. We hence consider the blue vertex as topologically-
expandable, up to inflation.

cluster mesh, coincident vertices are drawn in pur-

ple. The inflation is done by first splitting an edge

between 𝑏0 and cluster mesh vertex 𝑐 . The newly

created vertex 𝑏1 can be moved so that the expan-

sion cone of 𝑣 is not degenerate anymore and 𝑣

can be expanded. In 3D, this operation allows us

to augment non-ball-topology expansion cones

into ball-topology ones, as long as their base is

simply connected (cf. the definition of topological

expandability above). Figure 4 provides a more

complete overview of this operation in 3D.

Simple Expandability: If a vertex is topologically-expandable and
its expansion cone is star-shaped, we say it is simply-expandable.
To bridge the gap between topological and simple expandability,

we use the star-shapification operation from [Nigolian et al. 2023],

Section 5.3. Conceptually, it relies on the fact that even if an expan-

sion cone is not star-shaped, there must be a region lying inside of

it that is. The initial non-star-shaped region can then be discretely

bent to fit the star-shaped subregion, in a way that guarantees not

to create any inversion. Discretizing this bending process is done

by splitting edges connecting the vertex of interest and some of its

expanded neighbors. Such edges can potentially be split numerous

times, depending on the extent to which they must be bent to fit the

star-shaped subregion. This potentially intense and very localized

refinement will be one of the main source for slow run times, for rea-

sons discussed in Sec. 4.2.2. Figure 5 provides an intuitive overview

of this star-shapification operation. For a detailed description please

refer to [Nigolian et al. 2023].

3.2 Expandability Criterion
So far, we have only expressed the expandability of a vertex in terms

of its expansion cone. Let us now show how we can use information

solely from the cluster mesh to obtain the same information.

Proposition 1. The Euler characteristic of a (non-pure) mesh is
constant under vertex removal if and only if the Euler characteristic of
the link of the vertex is 1. i.e. if 𝑣 ∈ 𝑀 , then 𝜒 (𝑀 \ St(𝑣)) = 𝜒 (𝑀) ⇔
𝜒 (Lk(𝑣)) = 1.
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Fig. 5. An intuitive representation of the star-shapification operation pre-
sented in [Nigolian et al. 2023]. The top row shows the expansion cone of
the blue vertex (here in isolation for clarity), while the bottom row depicts
it seen from the top, highlighting the shape of its conic profile. Left: the ex-
pansion cone of the blue vertex is not star-shaped. Middle: by continuously
bending some of the edges incident to the blue vertex, we can contract this
shape into a star-shaped subregion of the original expansion cone. Right:
this bending is discretized by splitting the corresponding edges, potentially
multiple times. The relatively high number of additional vertices should
hint at how much refinement such an operation can lead to, even for small
expansion cones such as this one. By construction, the cells incident to the
newly created vertices (not shown here for clarity) cannot be inverted.

Proof. Let 𝑣𝑣, 𝑒𝑣, 𝑓𝑣 be the number of vertices, edges and faces of

Lk(𝑣). Then St(𝑣) has 1 vertex, 𝑣𝑣 edges, 𝑒𝑣 faces and 𝑓𝑣 cells. Now

let 𝑉 , 𝐸, 𝐹 and 𝐶 be the number of vertices, edges, faces and cells of

𝑀 . When removing a vertex 𝑣 ∈ 𝑀 , we update 𝑀 as 𝑀 \ St(𝑣). Its
Euler characteristic is therefore:

𝜒 (𝑀 \ St(𝑣)) = (𝑉 − 1) − (𝐸 − 𝑣𝑣) + (𝐹 − 𝑒𝑣) − (𝐶• − 𝑓𝑣)
= (𝑉 − 𝐸 + 𝐹 −𝐶) + (𝑣𝑣 − 𝑒𝑣 + 𝑓𝑣) − 1
= 𝜒 (𝑀) + 𝜒 (Lk(𝑣)) − 1
= 𝜒 (𝑀) ⇔ 𝜒 (Lk(𝑣)) = 1

□

In our case, we can replace 𝑀 with 𝑀•, Lk(𝑣) with Lk
• (𝑣) and

“vertex removal” with “vertex expansion”, as is the case for the

following proposition:

Proposition 2. A (non-pure) mesh remains a single connected
component under vertex removal if and only if the link of the vertex
is a single connected component. i.e. if 𝑣 ∈ 𝑀 , then 𝑏0 (𝑀 \ St(𝑣)) =
1⇔ 𝑏0 (Lk(𝑣)) = 1.

Proof. For a given mesh with 𝑏0 (𝑀) = 1, a vertex such that

removing it from 𝑀 would increase 𝑏0 (𝑀) is called a cutvertex. If
𝑣 is not a cutvertex, then removing (expanding) it from 𝑀 does

not change 𝑏0 (𝑀) = 1. If it is, then it necessarily is a neighbor of

the multiple connected components of 𝑀 \ St(𝑣), which implies

that 𝑏0 (Lk(𝑣)) ≠ 1. Conversely, if 𝑏0 (Lk(𝑣)) = 1, then there must

be a path between any two of its neighbors and 𝑣 cannot be a

cutvertex. □

Propositions 1 and 2 together imply that the cluster mesh is simply

connected after expanding a vertex, if and only if the unexpanded

link of this vertex is simply connected as well. We now move on

to show the relation between the expanded link, i.e. the expansion

cone base, and the unexpanded link.

Proposition 3. If 𝑣 ∈ 𝑀•, then Lk◦ (𝑣) is simply connected ⇔
Lk• (𝑣) is simply connected

Proof. Since 𝑣 is necessarily an interior vertex, its link must be

of sphere-topology. The link is split into 3 parts: Lk
◦ (𝑣), Lk• (𝑣)

and the interface between those two. Since Lk
◦ (𝑣) ∩ Lk• (𝑣) = ∅, if

either of those two has multiple connected components, then the

other cannot be simply connected. Conversely, if either is not simply

connected, the other must have multiple connected components.

Therefore, one is simply connected if and only if the other is simply

connected as well (see Figure 6). □

𝑣
𝑣

Fig. 6. Left: Lk• (𝑣) (purple) is simply connected, and so is Lk◦ (𝑣) (red). The
vertex in the center is therefore expandable. Right: Lk• (𝑣) is not simply
connected, and thus separates Lk◦ (𝑣) into multiple connected components.
The vertex is therefore not expandable.

Corollary 1. As long as we can find an unexpanded vertex whose
unexpanded link is simply connected, we can expand it and maintain
the simple connectedness of the cluster mesh.

Proof. Trivial from Propositions 2 and 3. □

Thus, instead of using the simple connectedness of the expansion

cone as in Sec. 3.1, we can use the following, algorithmically more

efficient expandability criterion:

𝑣 ∈ 𝑀• is expandable⇔ 𝑏0 (Lk•) = 1 and 𝜒 (Lk•) = 1 (1)

We can relate this condition to topological manifoldness by ob-

serving that expandable vertices are always on the boundary of a

topological 𝑘-manifold. A vertex is called 1-manifold-expandable
if it is incident to a single cluster mesh edge. When incident to a

single open triangle fan of the cluster mesh, we call it 2-manifold-
expandable. Finally, a vertex incident to a single open half-ball of

the cluster mesh is said to be 3-manifold-expandable. As we can see

on the right, with the cluster mesh in magenta

and the expanded mesh in green, there is a direct

relationship between the topological manifold-

ness of a vertex and its expandability. Vertices

𝑐0, 𝑐2, and 𝑐3 are 1−, 2− and 2−manifold, have

a simply connected unexpanded link (and cone

base), and are thus expandable. However, 𝑐1 is not manifold and has

two connected components in its unexpanded link (and thus in its

expansion cone base) and is hence not expandable. See Figure 7 for

a more in-depth overview with a 3D example.
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2-manifold-exp. not 𝑘-manifold-exp. not 𝑘-manifold-exp. 1-manifold-exp.

Fig. 7. Leftmost: a cutout of a mesh with its cluster mesh in purple (non-degenerate here for clarity). Then, from left to right, different vertices (in blue) and
their expansion cones (in orange, base in red). Below each expansion cone example, the vertices’ unexpanded stars and links. This illustrates the intrinsic
relationship between the unexpanded link and the expansion cone base (the expanded link). The latter is simply connected if and only if the former is simply
connected as well, as demonstrated in Sec. 3.2.

3.2.1 Main Advantage of the Cluster Mesh: The ability to focus on

the cluster mesh highlights the main advantage of our approach.

Indeed, although the expanded part of the mesh can be subject to

arbitrary refinement, the cluster mesh is left unrefined throughout

the expansion process. Since expansion cones can grow arbitrarily

large due to refinement, using their properties as an expandability

criterion means exploring an arbitrarily large number of vertices.

On the other side, only requiring to explore the unexpanded ver-

tices (from the cluster mesh) means that verifying the topological

expandability criterion is bounded by the maximum valence of any

vertex of the (unrefined) input mesh, warranting predictable and

strictly bounded computation cost.

4 THE CLUSTER MESH EXPANSION ALGORITHM
In this section, we present our novel algorithm, which is a special-

ization of the SaE framework, shown in Alg. 1. Conceptually, our

algorithm iteratively expands vertices from the cluster mesh until it

becomes empty. In addition to selecting an expandable candidate

vertex (line 5), each expansion might require inflation (line 9) and/or

star-shapification (line 10) to enable a valid geometric position (line

11). Aside from the expansion order, two main factors influence

the performance of our algorithm: the amount of refinement and

the required numerical precision. In order to guarantee success,

the inflation and star-shapification components require an exact

representation of vertex coordinates. Since both components also

refine the mesh, in the worst case, mesh complexity and memory

requirements might increase exponentially. Consequently, the ex-

pansion candidate selection as well as all other components, are

equipped with heuristics to minimize refinement and precision, and

thus to maximize practical performance. In Sec. 4.1 we first clarify

the expansion order of cluster mesh vertices, before detailing other

important components to obtain good performance in Sec. 4.2.

4.1 Expansion Order
In each iteration of Alg. 1, our new criterion of Eqn. (1) characterizes

the set of expandable vertices 𝐸𝑥𝑝 (𝑀•) from the cluster mesh which

could be processed next. Consequently, to warrant robustness, it is

essential that 𝐸𝑥𝑝 (𝑀•) ≠ ∅ whenever the cluster mesh𝑀• is non-
empty. Otherwise, the algorithm could not proceed with expansions

Algorithm 1 The Cluster Mesh Expansion Algorithm

Input:
𝑀 , a ball-topology tetrahedral mesh

𝜙𝜕 , a bijective boundary piecewise linear map onto a star-shaped do-

main 𝐷

Output:
𝑀 ′ , the input mesh𝑀 after potential refinement

𝜙 , a bijective volumetric PL map of𝑀 ′ onto 𝐷
1: procedure ClusterMeshExpansion(𝑀,𝜙𝜕 )

2: 𝜙 (𝑉 ◦ ) ← 𝜙𝜕 (𝑉 ◦ )
3: 𝜙 (𝑉 • ) ← Center(𝐷)

4: while𝑉 • ≠ ∅ do
5: 𝑣 ← SelectCandidate(𝑀•) //Sec. 4.1.2

6: if no candidate found then
7: NOBUENOSS detected→ STOP

8: end if
9: (𝜙,𝑀 ′ ) ← Inflate(𝐸𝐶 (𝑣)) //Sec. 3.1

10: (𝜙,𝑀 ′ ) ← Star-Shapify(𝐸𝐶 (𝑣)) //Sec. 3.1

11: 𝜙 (𝑣) ← Center(𝐸𝐶 (𝑣)) //Sec. 4.2.3

12: 𝑀• ← 𝑀• \ St• (𝑣)
13: 𝑉 • ← 𝑉 • \ 𝑣
14: end while
15: end procedure

despite there still being degenerate elements. Interestingly, when

experimenting with random expansion orders on our entire dataset

of 12000 inputs, we did not find any failure case, suggesting that at

least the probability of generating a non-empty cluster mesh with

𝐸𝑥𝑝 (𝑀•) = ∅ is very low. Intuitively, this can be understood by

recalling from Sec. 3.2 that expandable vertices sit on the boundary

of a 𝑘-manifold, and the existence of a simply connected, non-pure

simplicial complex without 𝑘-manifold-expandable vertices is not

obvious. Please also note the direct relation to the class of shellable

meshes, where a shelling sequence warrants the iterative removal

of elements while preserving simple connectedness. Hence, it is not

surprising that from a given shelling sequence, a viable expansion

sequence can always be constructed, as we explain in Sec. 4.3. How-

ever, it is somewhat surprising that non-empty cluster meshes with

𝐸𝑥𝑝 (𝑀•) = ∅ do exist, as described next.

ACM Trans. Graph., Vol. 43, No. 6, Article 170. Publication date: December 2024.



170:8 • Valentin Z. Nigolian, Marcel Campen, and David Bommes

4.1.1 NOBUENOSS. We clarify the existence of a non-pure simpli-

cial complex that is a “NO-BoUndary, Euler-characteristic-1, Non-
manifOld, Simply-connected Surface” by explicit construction. It

cannot consist solely of vertices and edges, since its simple connect-

edness induces a tree structure, which always exhibits 1-manifold-

expandable vertices at its leaves. However, as depicted in Fig. 8,

starting from a disc-topology surface and then gluing the surface

along its boundary, the simple connectedness requirement can be

preserved, while turning the boundary into a non-manifold curve.

Interestingly, this particular example is topologically equivalent to

the (subdivided) interior of the Knotted Hole, a famous non-shellable

mesh introduced one century ago by Furch [1924].

Fig. 8. An example of a “NO-BoUndary, Euler-characteristic-1, Non-
manifOld, Simply-connected Surface” (NOBUENOSS) and how it can
be constructed. The boundary edges (blue) are turned into non-manifold
edges (red) by gluing them to another part of the mesh. In the resulting
mesh, none of the vertices is 𝑘-manifold-expandable. The resulting sur-
face is 3D-embeddable, simply connected and does not separate space but
still does not have 𝑘-manifold boundary points. The model is available at
https://www.algohex.eu/publications/cluster-mesh-sae

4.1.2 Expansion Priority. While, according to our experiments, the

selection of a specific expansion candidate from 𝐸𝑥𝑝 (𝑀•) is not
critical for robustness, it might still significantly impact the overall

run time due to induced mesh refinement and precision require-

ments. Consequently, we devise a heuristic selection mechanism

with the goal of minimizing refinement and precision demands,

consisting of three criteria. The number one priority is simply-

expandable vertices, as they do not require any refinement during

expansion. If there is no simply-expandable vertex, we next con-

sider vertices requiring star-shapification, and then those requiring

inflation, both types involving on-the-fly refinement. To further

disambiguate candidates, a second selection criterion is employed,

preferring 𝑘-manifold-expandable vertices with lower k. This can be

seen as trying to keep the cluster mesh as close to a pure simplicial

mesh as possible. Indeed, removing a 1-manifold-expandable vertex

(e.g. 𝑐0 on the left) can only improve the situation for

its sole neighbor, potentially making it expandable, as

is the case for 𝑐1 here. Expanding 2- and 3-manifold-

expandable vertices, however, can negatively impact

the expandability of their neighbors. An example is

given by 𝑐2 and 𝑐3 on the left, where both are initially

expandable, but expanding either leaves the other non-expandable.

The third and final selection heuristic to further disambiguate is

the number of expanded neighbors of a candidate vertex. We ob-

served that prioritizing simply-expandable vertices with a higher

Fig. 9. Left: a vertex (blue) and its non-star-shaped expansion cone. Mid-
dle: the robust star-shapification operation (cf. Sec. 3.1 and Fig. 5) refines
some edges on its sides. Right: the additional vertices created by those
edge splits are now part of another expansion cone. The potential star-
shapification of this second cone will thus require even more splits, which
will in turn impact the expansion of the subsequent vertices. In addition,
using exact representation means that newly created vertices require an
exponentially increasing number of bits for their representation.

number of vertices in their expansion cone is beneficial in the long

run. Such vertices might otherwise require star-shapification in the

future, with an amount of refinement proportional to the number

of neighbors. Conversely, the expansion cone of a vertex requiring

star-shapification, should be as small as possible, to minimize the

necessary refinement.

4.2 Implementation Details
4.2.1 Expansion Cone Inflation. The inflation operation, introduced
in Sec. 3.1 and illustrated in Figure 4, is implemented as follows.

Consider a given vertex 𝑣 whose expansion cone is not of disc-

topology (but is simply connected), thus requiring inflation: For

each vertex 𝑏 ∈ Lk◦ (𝑣) that is a cutvertex of Lk◦ (𝑣), split all edges
(𝑏, 𝑐𝑖 ) such that 𝑐𝑖 ∈ 𝑀•, 𝑐𝑖 ≠ 𝑣 . Those topological splits initially

create sets of coincident vertices, which are subsequently expanded

by re-location inside the kernel of their 1-ring neighborhood. This

geometric positioning part of the inflation is identical to the “Cluster

Isolation” operation from [Nigolian et al. 2023], Appendix C.1, which

is guaranteed to expand all split vertices sequentially.

4.2.2 Post Star-Shapification Edge Collapses. The
star-shapification procedure is conservative in

generating enough degrees of freedom, often split-

ting a single edge multiple times. Consequently,

we inherit the edge collapsing mechanism of

[Nigolian et al. 2023] to greedily remove addi-

tional vertices that turn out to be unnecessary. As

seen in the figure to the right, splitting an edge

on the boundary of the expansion cone of vertex

𝑐0 creates vertices 𝑣0 and 𝑣1, which will become

part of the expansion cone of 𝑐1. In a 3D case, this

would increase the likelihood of 𝑐1’s expansion

cone to require star-shapification and the cost to do so. See also

Figure 9 for a 3D example. Therefore, the edge-collapsing operation,

even though relatively time-consuming, can sometimes efficiently

counterbalance the refinement necessary to perform future star-

shapifications.

4.2.3 Precision Reduction. In our algorithm, a given vertex 𝑣 , with

EC(𝑣) being star-shaped, is expanded to its Chebyshev center, which
is a center offering a kernel-inscribed ball of maximum radius. Note
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that the Chebyshev center can be computed through a linear pro-

gram and the explicit construction of the kernel is never required in

our algorithm. However, the exact position of the Chebyshev center

is often of unnecessarily high precision since any (low-precision)

point from the kernel would be sufficient. Consequently, we inherit

the precision truncation mechanism of [Nigolian et al. 2023], which,

based on sampling, searches low-precision points near the Cheby-

shev center and within the kernel. We refer the reader to [Nigolian

et al. 2023] for all implementation details of this component, which

we do not modify in any way.

Therefore, we add a novel precision reduction mechanism, specif-

ically targeting expansions involving star-shapification. The star-

shapification first contracts the initial expansion cone towards an

edge connecting 𝑣 and a so-called witness vertex 𝑤 , an expanded

neighbor of 𝑣 . Consequently, there must be a point somewhere be-

tween 𝑣 and𝑤 that is in the kernel of EC(𝑣). Sampling low-precision

convex combinations on this line segment empirically performs bet-

ter than naive sampling near the Chebyshev center. We employ a

simple binary-search strategy, starting from the midpoint between

𝑣 and𝑤 . The search terminates if a valid position is found or if the

required precision becomes excessive, i.e. higher than the precision

of the Chebyshev center.

4.2.4 Smoothing. Similarly to [Nigolian et al. 2023] we employ

Laplacian smoothing to foster the creation of star-shaped expansion

cones and prevent vertices from geometric clustering inducing high

precision requirements. However, since this operation can be costly

when applied globally, it is preferable to perform smoothing more

selectively. Empirically, only smoothing the cluster mesh’s direct

(expanded) neighbors provides a good trade-off between run time

cost versus precision reduction, and the number of expansion cones

made star-shaped.

4.2.5 Subcluster Expansions. Although expanding single vertices is

theoretically sufficient for our novel algorithm, our experiments indi-

cated that expandingmultiple vertices at once can sometimes be ben-

eficial. Indeed, the bottleneck of our method is the star-shapification

operation; it should be avoided as much as possible. When consider-

ing multiple candidate vertices simultaneously, we can investigate

the union of their expansion cones and verify star-shapedness. In

such a case, those vertices can be expanded to a location in this

union’s kernel and be subsequently expanded individually. Note that

we do not extend our novel definition of topological expandability

(see Sec. 3.1) to subclusters and instead only rely on the geometric

criterion of star-shapedness. Picking a valid subset of unexpanded

vertices is a difficult combinatorial problem, and we thus restrict

our subsets to consist of at most 4 vertices. We justify this choice of

an upper bound with the experiment shown in Figure 16. Generally,

this process, named a non-trivial cluster expansion and described in

detail in [Nigolian et al. 2023] implies systematically less refinement

than the star-shapification. Even if enabling this component results

in a clear increase in performance, it comes with the unfortunate

additional time complexity of its combinatorial nature. We discuss

the benefits of its integration in more detail in Sec. 5.4. An additional

important note here is that although we do not provide any proof, it

is clear that enabling the expansion of subclusters would not help in

making progress in a NOBUENOSS configuration. Indeed, in such

a case, the expansion cone of any (strict) subset of vertices would

also have multiple connected components on its boundary, making

this subset not expandable.

4.2.6 The Priority Queue Cluster Mesh Expansion Algorithm. Let
us now discuss how those components can be assembled into an

efficient implementation. First, we set up a priority queue, such that

vertices are handled in an order according to the criteria presented in

Sec. 4.1.2. The queue is initially filled with all𝑘-manifold-expandable

cluster mesh vertices (and their corresponding priority). In addi-

tion, whenever a vertex is expanded, we also reevaluate the priority

of its direct neighbors and update the priority queue accordingly.

This allows to keep a polynomial average-case asymptotical behav-

ior for the candidate exploration component. However, account-

ing for the punctual star-shapification operations, the worst-case

asymptotical behavior can become exponential. We thus see star-

shapifications as a last resort and only apply them after expiring all

simply-expandable vertices and 2-, 3- and 4-subclusters expansions.

Sec. 5.4 discusses how these two distinct behaviors manifest in our

test cases. Finally, the smoothing pass described in Sec. 4.2.4 is only

done periodically, after each 10 expansions, offering a good compro-

mise between the number of vertices made simply-expandable and

the smoothing overhead.

4.2.7 Bijectivity In IEEE 754 Double Precision. While using an ex-

act data type to represent the coordinates of vertices offers strict

guarantees, e.g. to find valid centers during expansion, it is often

not suitable for real-world applications. Specifically, relying on ex-

act rational numbers prevents us from using some mathematical

functions (e.g. the square root), which might be necessary for down-

stream applications. In order to bridge the gap between bijectivity

in exact and floating-point representation, we apply a final pass of

dedicated geometric optimization on the resulting mesh. It consists

in iteratively moving each vertex to the Chebyshev center of its

1-ring neighborhood. A single pass on all interior vertices corre-

sponds to a Gauss-Seidel iteration of the optimization problem of

maximizing the minimum tetrahedral heights. An alternative ap-

proach would be to optimize the tetrahedral heights directly, but

using an iterative Gauss-Seidel approach allows us to benefit from

the precision reduction mechanism of Sec. 4.2.3. In our experiments,

a final pass of snap rounding is sufficient to obtain bijective maps

in double precision for the majority of inputs.

4.3 Expansion Sequences for Shellable Meshes
As mentioned in Sec. 4.1, encountering a NOBUENOSS cluster mesh,

and thus not being able to expand all vertices, is highly unlikely.

Nevertheless, we are able to devise a method to entirely avoid reduc-

ing the cluster mesh into such a configuration, as long as the input

mesh is shellable. As a reminder, a ball-topology mesh with 𝑛 cells is

shellable if there exists a sequence of cells 𝑐0, 𝑐1, ..., 𝑐𝑛 such that the

mesh remains ball-topology after each removal of a cell in sequence.

From such a sequence, we can generate an expansion sequence as

follows: for each cell 𝑐𝑖 of a shelling sequence, we pick one vertex of

𝑐𝑖 such that expanding it removes exactly 𝑐𝑖 from the cluster mesh.

This can only happen if the 𝑐𝑖 is incident to a single interior face.

Otherwise, we split either an edge or a face of 𝑐𝑖 , then expand this
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𝑡4 𝑡3
𝑡2 𝑡1

𝑣4

𝑣3

𝑣2
𝑣1

Fig. 10. Top right: Part of a shelling sequence (𝑡1, 𝑡2, 𝑡3, 𝑡4 ) of the top left
mesh. This shelling sequence can be converted to the bottom right expansion
sequence (𝑣1, 𝑣2, 𝑣3, 𝑣4 ) by first splitting faces or edges based on the number
of interior faces of the corresponding cells. The first removed cell 𝑡1 has 3
interior faces, and its only boundary face (purple) is split. By removing this
new vertex 𝑣1, the resulting mesh is the same as if removing the original cell.
Subsequently, splitting the edge incident to the two boundary faces of 𝑡2
(magenta) generates vertex 𝑣2, which can be deleted to mimic the deletion of
𝑡2. If a cell only has a single interior face, such as 𝑡4, removing the opposite
vertex 𝑣4 effectively deletes 𝑡4 without requiring any refinement.

additional vertex, effectively removing the (now subdivided) cell 𝑐𝑖
from the cluster mesh. This new vertex is guaranteed to be expand-

able by construction. An important subtlety here is that to obtain

this expansion sequence from the shelling sequence, we temporar-

ily consider boundary vertices as unexpanded, meaning the whole

mesh is considered to be the cluster mesh. “Expanding” boundary

vertices is simply done by assigning them their prescribed position.

Figure 10 illustrates the conversion from shelling to expansion se-

quence, and Algorithm 2 formally defines this process. However,

the downside of pre-computing the expansion sequence is that it

does not consider the “priority” (as described in Sec. 4.1.2). As a

worst case, the sequence could entirely comprise vertices requiring

star-shapification, leading to an exponential asymptotical behavior.

5 EVALUATION
In this section, we evaluate various aspects of our algorithm and

provide a detailed comparison to the state of the art. We specifically

compare our novel algorithm, referred to as Cluster Mesh (CM),

to publicly available implementations of the original Shrink-and-

Expand (SaE) method
1
[Nigolian et al. 2023] and the Galaxy Maps

(GM) method
2
[Hinderink and Campen 2023]. Note that we omit a

direct comparison to other relevant approaches, such as TLC [Du

et al. 2020] or the Foldover-Free maps [Garanzha et al. 2021], since

the data is already available in [Nigolian et al. 2023]. However, it

should be noted that while many mapping techniques, including

TLC and FoF, are rather sensitive to the distortion of the prescribed

boundary, for our method we could not observe a systematic run

time improvement when reducing the boundary distortion in a

pre-processing step.

Dataset. Unless explicitly stated differently for all experiments

we employ the dataset of Nigolian et al. [2023], which consists of

~3𝑘 ball-topology tetrahedral meshes originating from the TetWild

1
https://github.com/cgg-bern/expansion-cones

2
https://github.com/SteffenHinderink/GalaxyMaps

Algorithm 2 A Shelling-Based Expansion Sequence

Input:
𝑀 , a shellable, ball-topology tetrahedral mesh

Output:
𝑆𝑒𝑥𝑝 , a sequence of expandable vertices

𝑀 ′, the input mesh 𝑀 , refined so that 𝑆𝑒𝑥𝑝 is a viable expansion se-

quence

1: procedure ShellingBasedExpansionSeqence(𝑀)

2: 𝑆𝑒𝑥𝑝 ← ()
3: 𝑆𝑠ℎ𝑒𝑙𝑙 ← FindShellingSeqence(M)

4: 𝑀𝑠ℎ𝑒𝑙𝑙 ← 𝑀

5: for each 𝑡 ∈ 𝑆𝑠ℎ𝑒𝑙𝑙 do
6: 𝑘 ←#interior faces of 𝑡 inside𝑀𝑠ℎ𝑒𝑙𝑙

7: Let 𝑣 be the next vertex to expand

8: if 𝑘 = 1 then
9: 𝑣 ← the vertex opposite to the interior face of 𝑡 in𝑀𝑠ℎ𝑒𝑙𝑙 .

10: else if 𝑘 = 2 then
11: Split the only edge not incident to either of the two interior

faces of 𝑡 in𝑀𝑠ℎ𝑒𝑙𝑙 .

12: 𝑣 ← the vertex created by this edge split.

13: else if 𝑘 = 3 then
14: Split the only boundary face of 𝑡 in𝑀𝑠ℎ𝑒𝑙𝑙 .

15: 𝑣 ← the vertex created by this face split.

16: end if
17: Append 𝑣 to 𝑆𝑒𝑥𝑝

18: 𝑀𝑠ℎ𝑒𝑙𝑙 ← 𝑀𝑠ℎ𝑒𝑙𝑙 \ 𝑡
19: end for
20: end procedure

dataset [Hu et al. 2018]. Each of those is equipped with 4 distinct

and challenging star-shaped boundary conditions, resulting in a

total of ~12𝑘 test cases.

Time Limit. In order to handle the large dataset, the run time of

each input is restricted to 6 hours. We observed that most inputs that

do not finish within 6 hours, still do not terminate after several days.

Responsible for such worst-case behavior is repeated refinement

during star-shapification, e.g. depicted in Figure 9, and precision

blow-up, which both can lead to exponential run time complexity.

5.1 Expansion Sequence Viability
The first experiment verifies that our novel vertex expansion cri-

terion of Eqn. 1 is suitable for greedily finding viable expansion

sequences. For this experiment, we only consider single-vertex ex-

pansions (no clusters) and drop all geometric requirements, includ-

ing star-shapification and inflation. This way, the worst-case time

complexity resulting from refinement and precision blow-up can

be effectively avoided, and the entire dataset can be successfully

processed within 120 minutes. Consequently, the greedy expansion

order of Alg. 1 is well-justified, not reducing the overall success

rate but effectively avoiding the additional costs of the theoreti-

cally superior shelling-based alternative of Sec. 4.3. This experiment

suggests that all timeouts, when considering the geometric require-

ments, result from refinement and precision blow-up. Moreover,

NOBUENOSS surfaces were never found, except for the manually

created Knotted-Hole case of Fig. 8. A theoretically fully satisfactory
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Table 1. The table below summarizes key metrics for our comparison with
the original SaE implementation. Perhaps the most important one is the
success rate, showing the percentage of meshes for which a bijective map
could be obtained within the 6h time limit, in exact representation. Our
algorithm here performs significantly better, even though the time limit is
still exceeded for 4.2% of cases. Another important metric for practical uses
is the rate at which maps can be converted to floating-point (f.p.), making
our new version of SaE more compatible with downstream applications.
Comparing run times, averaged per cell of an input mesh and then per
mesh, our method is about twice faster than the original SaE. It also requires
significantly less refinement to obtain valid maps. The speed and refinement
comparison is further developed in Figure 11.

success success time / input tet (s) growth ratio

< 6h f.p. avg max avg max

SaE 76.3% 36.6% 2.31 10
−2

2.56 1.66 459

CM

(ours)

95.8% 74.3% 6.36 10
−3

1.18 1.06 34.2

algorithm can be obtained by executing the shelling-based alter-

native of Sec.4.3 whenever Alg. 1 terminates with a NOBUENOSS.

Moreover, even the shellability limitation can be resolved by allow-

ing on-demand global refinement whenever no shelling sequence

exists [Campen et al. 2016]. However, while theoretically appealing,

the practical relevance of such an algorithm is unfortunately rather

limited due to its excessive worst-case run time.

5.2 Comparison with original Shrink-and-Expand
Since the input requirements of SaE and our novel CM are identi-

cal, the comparison is straightforward. We compare w.r.t. (R1) the

practical robustness as the number of bijective maps constructed

within 6 hours, (R4) the precision requirements as the ability to

truncate the result to IEEE 754 double precision, (R2) the run time

as the average time per input tetrahedron, and (R3) the parsimony

as the growth ratio, i.e. the ratio between the number of vertices of

the output (after refinement) and input mesh. Table 1 and Figure 11

clearly demonstrate that CM outperforms SaE w.r.t. all these key

metrics, boosting the success rate within a 6h time limit from 76.3%

to 95.8%. Furthermore, as shown in Table 2, there are only a few

cases of relative underperformance, where SaE delivered a bijec-

tive map within the time limit while CM could not. Another key

result is demonstrated in Figure 12, which suggests that the average

asymptotical run time behavior of CM is polynomial rather than

the observed exponential behavior of SaE. Regarding the distortion

requirement (R5), the results of CM are similar to those of SaE. In

Sec. 5.4.2 we show that extreme distortion sometimes limits the

value of the generated maps as initializers for subsequent distortion

minimization. All bijective maps generated with CM are available at

https://www.algohex.eu/publications/cluster-mesh-sae, for further

analysis, visualization or comparison.

5.3 Comparison with Galaxy Maps
Galaxy Maps (GM) [Hinderink and Campen 2023] consist of two

major stages. Starting from a given map with degeneracies, the

first stage isolates degeneracies by covering them with star-shaped

cavities in the image. The second stage then employs a variant of the

Fig. 11. We measure our performance compared to the original SaE imple-
mentation by computing the per-mesh ratio for the run time and growth
ratio. CM performs significantly better in both metrics, being faster than
SaE in 98% of cases and growing less in 86.6%. We note, however, that in
some relatively rare cases, our implementation can be significantly slower
than the original SaE.

Table 2. Looking at the outcome for each mesh of the dataset between the
original SaE implementation and ours, we see that our implementation has
a significantly higher success rate. Moreover, among the cases for which
our method times out before finding a bijective map within 6 hours, the
reference method can only successfully map 12 of them. We could not
identify any particular feature in these 12 cases. Interestingly, there are 490
meshes for which both methods time out, indicating that those are the most
challenging cases of the dataset.

CM (ours)

total

timeouts successes

SaE

timeouts 490 2334 2824

successes 12 9061 9073

total 502 11 395 11 897

Foliation (FOL) mapping approach [Campen et al. 2016] to obtain a

bijective map for each star-shaped cavity, effectively resolving all

defects of the given initial map. Since the isolation of defects is also

possible in combination with our CM approach, we keep the first

stage but replace FOL with CM in the second stage. As hundreds

of stars of various sizes can occur in a single mesh, we restrict the

comparison to the 60 cuboids taken from [Brückler et al. 2022b] and

used in the evaluation of GM. Extracting the stars generated by GM

from those 60 meshes, we obtain 1784 test cases, with sizes ranging

from 12 to 4081 tetrahedra (~47.9 on average). We generate PL maps

for each of those using FOL and compare the results to those of CM,

as summarized in Table 3 and Fig. 13. The success rates are similar,

but CM clearly outperforms FOL w.r.t. run time and refinement.

Consequently, replacing the naive shrinkage-based initialization of

CM with the more sophisticated growing of stars of GM offers a

powerful combination to efficiently and robustly generate bijective

tetrahedral maps. Interestingly, when running GM on our dataset,

for most challenging cases where CM times out, GM determines

a single large star, i.e. it is unable to isolate defects of smaller size.

Hence, those elusive 490 hard cases (see Table 2) form an interesting

dataset to stress-test future methods.
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Fig. 12. Each dot of this scatter plot represents a single mesh. Blue dots are
cases where a bijective map was obtained within the 6h time limit, while
the red dots exceeded the time limit. Aside from the lower number of red
dots, this clearly suggests that our method shows polynomial dependence
on the input size on average rather than exponential dependence as the
original SaE implementation. However, a significant portion of test cases
still show exponential behavior, as we discuss further in Sec. 5.4.

Table 3. A summary of the comparison with the foliation method [Campen
et al. 2016]. Although we have pretty similar success rates, both in exact
and floating-point (f.p.) representations, the performance gain is clear. Our
method is about 30 times faster and requires significantly less refinement.

success success time / input tet (s) growth ratio

< 6h f.p. avg max avg max

Fol 99.4% 99.3% 1.56 10
−2

6.82 2.11 214

CM

(ours)

99.5% 99.3% 4.90 10
−4

0.01 1.004 2.51

Fig. 13. Looking at the relation between mesh size and performance, it
is apparent that our method performs better than the foliation method.
Although FOL is more consistent in its trend, it becomes highly impractical
for meshes (or star cavities) larger than a few thousand tetrahedra.

Fig. 14. Sorting each mesh by its run time, we can see what percentage
of the dataset can be mapped within some given duration. Dark orange
bars indicate meshes for which a floating-point bijective map was extracted
from the exact representation one, while light orange bars indicate cases
for which the latter was necessary. Notably, one minute is sufficient to
generate a bijective map for most meshes. Past the inflection point around
the one-minute mark, meshes become increasingly costly to map. Even
though ~90% of cases can be mapped within 10 minutes, handling the rest
becomes exponentially costly. We also note how both the per-cell average
run time and growth ratio follow a trend similar to the per-mesh run time.

5.4 Additional Experiments
5.4.1 Detailed Analysis of CM. The cumulative plot of Figure 14

shows that a large fraction of inputs can be processed significantly

faster than the time limit of 6h, 65% within 1 minute, and 90% within

1 hour. Figure 15 provides additional insights regarding the most

time-consuming parts for success versus timeout cases. For inputs

requiring a large number of star-shapifications the frequently un-

successful subcluster search often becomes a critical bottleneck.

However, as discussed in Sec. 4.2.5, expanding subsets of vertices

(subclusters) can also sometimes significantly improve the perfor-

mance, as illustrated in Fig. 16. In summary, according to our ex-

periments, it seems clear that the principal source of refinement

and precision blow-up is the star-shapification component inherited

from SaE.

5.4.2 Distortion Minimization Initialization. According to Sec. 2.1,

the bijective maps generated by CM are valuable as initialization

of optimization-based techniques. We illustrate this principle by

optimizing a symmetric Dirichlet barrier energy (see [Abulnaga

et al. 2023]) to reduce the distortion of bijective maps generated by

CM. Of the 2846 bijective maps to a prescribed tetrahedral boundary

(a subset of our dataset) that we obtain within the time limit, the

distortion can be successfully reduced for 1430 cases. The conformal

and volumetric distortion before and after the optimization are illus-

trated in Figure 17. All remaining cases contain at least one highly

distorted element, which is geometrically valid when investigated

with exact predicates but numerically evaluated to infinite energy

since the Jacobian determinant in IEEE 754 double precision is zero

or negative. Consequently, from the perspective of practical appli-

cations, better bounding the distortion of the CM approach will be

an important direction for future work.
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Fig. 15. An overview of the time distribution between the different parts of
the algorithm. Eachmesh of the dataset is represented by a set of bars, sorted
by their total run time. Splitting this data between success and timeout
cases highlights the difference in behavior. For success cases, there are two
main dominant categories. Close to the entirety of the time is sometimes
spent on scheduling (maintaining the expansion priority queue, computing
the expandability of candidate vertices, etc.), which typically happens for
fast-processed meshes. For longer run times, on the other side, the most
dominant part is condidate subclusters exploration. However, in case of a
timeout, our method spends significant effort on exploring subclusters, often
without finding a valid one. Additionally, star-shapifications can sometimes
be quite costly, most likely when dealing with large and/or high-precision
expansion cones. The precision reduction mechanisms described in Sec. 4.2.3
can also represent a significant portion of the total computations, but are
necessary to maintain reasonable overall run times.

5.4.3 Map Generalization and Hexahedral Meshing. We demon-

strate the practical value of CM for generating bijective maps subject

to general non-ball-topology domains and w.r.t. non-star-shaped

boundary constraints. For this experiment, we rely on the motorcy-

cle complex based algorithm of [Brückler and Campen 2023; Brück-

ler et al. 2022a,b], constructing a bijective integer-grid map for hexa-

hedral mesh generation. The algorithm starts from a given bijective

seamless map, then extracts the motorcycle complex and performs

an integer-quantization including collapses in the cell-complex to

eventually obtain conforming boundary constraints for a set of oth-

erwise independent cuboid maps. CM offers a robust solution for

constructing these maps, where in each case, a deformed cuboid

needs to be mapped bijectively to an integer-sized and axis-aligned

cuboid in the image. Figure 18 illustrates the approach, where indi-

vidual cuboids are shown in different colors.

5.5 Future Work
The refinement and precision blow-up, mainly originating from the

star-shapification operation, sometimes lead to the non-satisfactory

worst-case run time behavior of the CM algorithm. Consequently, it

would be essential for future star-shapification operations to better

exploit the available geometric degrees of freedom by combining

a deformation targeting star-shapedness with very selective splits,

instead of the conservative splitting scheme employed so far. An-

other limitation of Alg. 1, which deserves future investigations, is

the inability to directly and efficiently handle NOBUENOSS cluster

meshes without the theoretical workaround of Sec. 5.1. While those

seem to be extremely rare in real-world meshes, the topological

restriction might still be problematic for certain applications.

Fig. 16. Evolution of three key performance metrics, depending on the max-
imum number of vertices that can be expanded at once (“subcluster”, see
Sec. 4.2.5). Using larger subclusters is clearly advantageous in terms of suc-
cess rate (both in exact and floating-point representation) and refinement,
while not meaningfully impacting run time. We do note, however, that using
subclusters of size larger than 4 actually has a negative impact on perfor-
mance, while not improving success rate. This can simply be explained by
the fact that exploring 𝑘-subclusters is a component with O(𝑛𝑘 ) complex-
ity, 𝑛 being the number of vertices of the cluster mesh. Another important
note regards the decreasing maximum growth rate (green curve, right plot).
This significant decrease comes from the worst-growth meshes not being
mapped within the time limit anymore. Using larger subclusters thus pre-
vents reaching the point where star-shapifications (and their corresponding
intense refinement) are necessary.

Fig. 17. We measure the per-element distortion in two ways: the conformal
distortion tr ( 𝐽𝑇 𝐽 )/det 𝐽 , and the volumetric distortion det 𝐽 +1/det 𝐽 , with
𝐽 being the map’s per-element Jacobian matrix. This histogram shows
the distribution of conformal (left) and volumetric (right) distortion, in
terms of the ratio of the total number of meshes (top) and total number
of elements (bottom) both before and after optimizing our maps with a
symmetric Dirichlet energy term. This data comes from 1430 cases for
which our method generates maps that can be used as an nitializer for
further optimization.

6 CONCLUSION
In this work, we presented our Cluster Mesh Expansion algorithm

to generate bijective maps from ball-topology meshes to star-shaped

prescribed boundaries. As a specialization of a recent bijective tetra-

hedral mapping framework, it extends the theoretical guarantees

on the class of input meshes it can successfully map. Evaluated on

a large and challenging dataset, it also proved to be more efficient

than the state of the art in terms of robustness (R1), run time (R2),

parsimony (R3), and precision (R4), as defined in Sec. 1. Despite a

small subset of remaining hard cases, where the practical run time

is prohibitively high, the CM algorithm is already suitable for many

practical applications.
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Fig. 18. Through the motorcycle complex of [Brückler et al. 2022b], a genus 3
mesh (left) is decomposed into ball-topology blocks, each mapped using our
method (CM) to an integer-grid-aligned parameter space (middle). Due to
the conforming quantization of [Brückler et al. 2022a] the integer-grid map
induced hexahedra of individual blocks stitch to a conforming hexahedral
mesh (right).
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