
Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization
MARTIN HEISTERMANN, University of Bern, Switzerland
JETHRO WARNETT, University of Oxford, United Kingdom
DAVID BOMMES, University of Bern, Switzerland

(a) Input: |% | = 4746

tq = 196 s

Eqw = 23.18

minMSJ = 0.274

(b) QuadWild IQP

tq = 1.83 s

Eqw = 9.59

minMSJ = 0.291

(c) Bi-MDF, exact (ours)

tq = 0.57 s

Eqw = 13.48

minMSJ = 0.273

(d) Bi-MDF, approx. (ours)

(e) Input: |% | = 16476

tq = 812 s

Eqgp = 2 049.7

minMSJ = 0.273

(f) QGP

tq = 2.91 s

Eqgp = 2587.3

minMSJ = 0.285

(g) Bi-MDF, greedy constr. (ours)

tq = 3.29 s

Eqgp = 2081.7

minMSJ = 0.293

(h) Bi-MDF, half-arc q. (ours)

Fig. 1. Bi-MDF optimization provides orders-of-magnitude faster performance when quantizing polygonal (a) and quadrangular (e) T-meshes of this genus-548
gyroid model. Colors indicate element quality as measured by the minimum scaled Jacobian (MSJ). For the QuadWild [Pietroni et al. 2021] based results (b-d)
we chose U = 0.005 and no singularity alignment. (b) uses QuadWild’s default settings for clustering (= = 300), per-cluster time limit (200 s), and early abort
heuristics. With clustering and abort heuristics disabled, QuadWild achieves an energy �@F = 9.70 with a duality gap of 23.8% after reaching a 24 h time limit.
Figures (f-g) demonstrate performance compared to QGP [Campen et al. 2015]. Bi-MDF with greedily chosen separation constraints (g) is fastest but leads to
slightly worse results. Half-arc quantization (h) expands the feasible region of allowed quantizations by quantizing either side of an arc separately.

Subdividing non-conforming T-mesh layouts into conforming quadrangu-
lar meshes is a core component of state-of-the-art (re-)meshing methods.
Typically, the required constrained assignment of integer lengths to T-Mesh
edges is left to generic branch-and-cut solvers, greedy heuristics, or a com-
bination of the two. This either does not scale well with input complexity
or delivers suboptimal result quality. We introduce the Minimum-Deviation-
Flow Problem in bi-directed networks (Bi-MDF) and demonstrate its use in
modeling and efficiently solving a variety of T-Mesh quantization problems.
We develop a fast approximate solver as well as an iterative refinement algo-
rithm based on matching in graphs that solves Bi-MDF exactly. Compared to

Authors’ addresses: Martin Heistermann, University of Bern, Institute for Computer
Science, Bern, Switzerland, martin.heistermann@unibe.ch; Jethro Warnett, University
of Oxford, Oxford, United Kingdom; David Bommes, University of Bern, Institute for
Computer Science, Bern, Switzerland, david.bommes@unibe.ch.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
0730-0301/2023/8-ART
https://doi.org/10.1145/3592437

the state-of-the-art QuadWild [Pietroni et al. 2021] implementation on the
authors’ 300 dataset, our exact solver finishes after only 0.49% (total 17.06s)
of their runtime (3491s) and achieves 11% lower energy while an approxi-
mation is computed after 0.09% (3.19s) of their runtime at the cost of 24%
increased energy. A novel half-arc-based T-Mesh quantization formulation
extends the feasible solution space to include previously unattainable quad
meshes. The Bi-MDF problem is more general than our application in layout
quantization, potentially enabling similar speedups for other optimization
problems that fit into the scheme, such as quad mesh refinement.

CCS Concepts: • Theory of computation → Network optimization;
Integer programming; • Computing methodologies→Mesh models.

Additional Key Words and Phrases: Quad meshing, T-Mesh quantization,
Discrete optimization, Flow networks, Bidirected graphs, Binet matrices

ACM Reference Format:
MartinHeistermann, JethroWarnett, andDavid Bommes. 2023.Min-Deviation-
Flow in Bi-directed Graphs for T-Mesh Quantization. ACM Trans. Graph. 42,
4 (August 2023), 25 pages. https://doi.org/10.1145/3592437

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0002-1757-7661
HTTPS://ORCID.ORG/0009-0001-3647-2208
HTTPS://ORCID.ORG/0000-0002-3190-1341
https://orcid.org/0000-0002-1757-7661
https://orcid.org/0009-0001-3647-2208
https://orcid.org/0000-0002-3190-1341
https://doi.org/10.1145/3592437
https://doi.org/10.1145/3592437

2 • Martin Heistermann, Jethro Warnett, and David Bommes

v1 v2

v3

v4
v5

p1 =


h12,
h23h34,
h45,
h51


h12

h21

a45 = a54

Fig. 2. An example T-Mesh consisting of vertices, arcs, half-arcs, and
patches. Circular segments (blue) indicate patch corners. Refer to Sec-
tion 4.1.1 for a formal definition.

1 INTRODUCTION
Several state-of-the-art field-based quadrangular re-meshing meth-
ods generate non-conforming T-mesh layouts as an intermediate
step towards the final quad mesh. This approach was initially con-
ceived as a way to split the expensive mixed-integer problem of
generating an integer-grid map into two easier problems [Campen
et al. 2015]: A seamless map can be computed for an input surface
from a frame field via purely continuous optimization. Its motorcy-
cle graph [Eppstein et al. 2008] yields a T-mesh – a patch layout that
may contain T-junctions, i.e., vertices that are corners of some but
not all incident patches (cf. Figure 2). The final integer-grid map can
then be obtained from this by solving a purely discrete optimization
problem, commonly called T-mesh quantization. Later approaches
forgo the seamless map generation and operate on the frame field
directly to obtain a T-mesh [Pietroni et al. 2021].
In this work, we focus on the T-mesh quantization problem and

frame it as an instance of a broader class of combinatorial problems,
a generalized minimum-cost flow problem on bi-directed graphs.

1.1 The T-mesh quantization problem
Depending on the algorithmic pipeline, the individual layout patches
constituting the T-mesh may already all be quadrangular, consist of
a limited set of =-gons, be simply connected, or might not guaran-
tee any of these useful restrictions. For simplicity, we will always
assume that each patch has disk topology.
In its most basic form, a T-mesh quantization assigns a positive

natural number to each T-mesh edge (quantized length), indicating
the number of output quad mesh edges into which to subdivide it.

s1=1 s2=1 s3=1

e1=1

e2=1

n1=2n2=1

w1=2

n1 + n2 = s1 + s2 + s3

w1 = e1 + e2

Suitable per-patch consistency con-
straints ensure the existence of a lo-
cal quad mesh for each patch that con-
forms to the subdivided patch bound-
aries, implying a conforming mesh of
the entire domain. A simple example
of such consistency constraints is to re-
quire opposite sides of a quadrangular patch to be quantized to the
same number, allowing tessellation with a regular grid, as depicted
in the inset figure.

In addition to the various kinds of T-meshes, two main objectives
need to be balanced depending on the application:

Fig. 3. The polygonal T-mesh quantization without alignment constraints
for the Toothbrush-holder1model included in theQuadWild-300 dataset
presents a seemingly simple quantization problem consisting of 126 patches,
but solving the associated IQP problem to optimality using Gurobi is sur-
prisingly expensive. QuadWild’s default settings’ early abort heuristic stops
optimization after 60s with a duality gap of 18.9% and an energy of 0.2928.
Running on 128 cores, Gurobi already finds an optimal solution (� = 0.29186)
after 5 seconds at a duality gap of 20.4%. However, the duality gap is only
down to 14.4% when reaching the memory limit of 1 TB after over 5 hours
(28 core-days) of computation. Our single-threaded Bi-MDF solver finishes
in 26ms, finding the optimum.

• Input fidelity:Quantized patches should be geometrically sim-
ilar to the original patches to minimize distortion, usually by
demanding quantized arc lengths close to their (parametric
or geodesic, potentially scaled) length in the T-mesh. Alterna-
tively, deviation of edge directions from prescribed directions
(e.g., by frame field or parameterization) should be minimized.
• Topological simplicity: The resulting topological structure
should be simple for semi-structured quad meshes, with few
well-aligned singular vertices of low degree. Ideally, the base
complex should contain a low number of faces.

In practice, quantization problems are often formulated as (Mixed-)
Integer Linear (ILP) orQuadratic (IQP) Programs [Lyon et al. 2021b,
2020; Peng et al. 2014; Pietroni et al. 2021] and solved using com-
mercial black-box solvers that usually employ branch-and-cut al-
gorithms [CPLEX 2009; Gurobi Optimizer 2022]. For T-meshes of
relatively low complexity, this approach usually finds a solution
quickly. However, worst-case exponential runtime motivates mod-
eling the problems in a way that admits efficient solvers that avoid
worst-case breakdowns. Such worst-case behavior is not just of
theoretical concern but does occur in practice, as demonstrated in
Figure 3.

1.2 Min-deviation quantization as ILP
We will start by looking into a simplified example problem on a
T-mesh consisting only of quadrilateral patches formed by a set of
arcs. For each undirected T-mesh arc 08 9 = 0 98 ∈ A, we introduce
one integer variable G8 9 ∈ N0 representing its quantized length. For
each patch ? ∈ P with sides ?0 . . . ?3, the aforementioned simple

1Thingi10k [Zhou and Jacobson 2016] id 54820, original author sholland91

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 3

consistency constraints amount to a pair of constraints

∀: ∈ {0, 1} :
∑

ℎ8 9 ∈?:
G8 9 =

∑
ℎ8 9 ∈?:+2

G8 9 . (1)

Our objective is to minimize the sum of absolute deviations from
real-valued target lengths ℓ8 9 ,

min
G∈NA0

∑
08 9 ∈A

��G8 9 − ℓ8 9 �� . (2)

To bring our problem into ILP form, we apply the standard transfor-
mation G8 9 = ℓ8 9 + G+8 9 − G

−
8 9
with new variables G+

8 9
, G−

8 9
∈ R≥0, and

G−
8 9
≤ ℓ8 9 , the latter to ensure non-negativity of G8 9 . This leads to the

linear objective function

min
G

∑
08 9 ∈A

G+8 9 + G
−
8 9 , (3)

equivalent under minimization, since only one of G+
8 9
or G−

8 9
is non-

zero in an optimal solution.
The new variables G+

8 9
and G−

8 9
represent positive and negative

deviations from the ideal length ℓ8 that are necessary to obtain
per-patch consistency.

1.3 Min-deviation quantization as flow problem
A flow 5 : � → N0 in a directed graph (+ , �) models the transport
of units between nodes along its edges. An edge 48 9 = E8 → E 9
moves 58 9 = 5 (48 9) ≥ 0 units from its tail E8 to its head E 9 .

We construct a flow network (+ , �) as
the patch dual of the T-Mesh input. It has
a node for each pair of opposite patch
sides and an edge for each dual T-mesh
arc, connecting the corresponding node
of the incident patches, as illustrated in
the inset figure. Patch consistency con-
straints now are precisely flow conserva-
tion constraints, ensuring that the total incoming and outgoing flows
at each node are equal:

∀E8 ∈ + :
∑
4 98 ∈�

598︸ ︷︷ ︸
inflow

−
∑
48 9 ∈�

58 9︸ ︷︷ ︸
outflow

= 0. (4)

We apply an analog of the transformation used for the ILP to repre-
sent the objective as a linear function over edge flow values,

58 9 = ℓ̂8 9 + 5 +8 9 − 5 −8 9 , (5)

where ℓ̂8 9 = round
(
ℓ8 9

)
, constrained by 0 ≤ 5 +

8 9
and 0 ≤ 5 −

8 9
≤ ℓ̂8 9 .

vi vj
f+
ij

ℓij

f−
ij

We can understand this as replacing each
edge 48 9 with a virtual edge carrying a con-
stant amount of flow ℓ̂8 9 , as well as a pair of
antiparallel edges 48 9 and 4 98 which allow
positive and negative deviations from the ideal value. Minimizing��58 9 − ℓ̂8 9 �� now amounts to minimizing 5 +

8 9
+ 5 −

8 9
. Target pseudo-flows

ℓ̂8 9 alone will generally violate flow conservation by some 18 at
vertices E8 . This must be balanced by flows through 48 9 and 4 98 . Al-
gebraically, after applying the substitution from Eqn. 5, the flow

conservation condition (Eqn. 4) amounts to

∀E8 ∈ + :
∑

9 :48 9 ∈�
5 +8 9 − 5 −8 9 −

∑
9 :4 98 ∈�

5 +98 − 5 −98 = 18 (6)

for per-node demands

18 := −
∑

9 :48 9 ∈�
ℓ̂8 9 +

∑
9 :4 98 ∈�

ℓ̂98 . (7)

Minimizing total deviations, we arrive at a Minimum-Cost-Flow
(MCF) problem [Ford and Fulkerson 1962]:

min
5

∑
8 9

5 +8 9 + 5
−
8 9 , (8)

s.t. ∀E8 ∈ + :
∑

9 :48 9 ∈�
5 +8 9 − 5 −8 9 −

∑
9 :4 98 ∈�

5 +98 − 5 −98 = 18 (9)

∀48 9 ∈ � : 0 ≤ 5 +8 9 (10)

∀48 9 ∈ � : 0 ≤ 5 −8 9 ≤ ℓ̂8 9 (11)

The linear constraints (Eqn. 9) are equivalent to �5 = 1, where �
is the node-edge incidence matrix of the flow network. Each edge
8 → 9 corresponds to a column in � with a 1 in row 9 , −1 in row 8 ,
and 0 for all other entries. Due to this special structure, � is always
totally unimodular [Ford and Fulkerson 1962; Hoffman and Kruskal
1956]. Total unimodularity implies the existence of integer optimal
solutions for the continuous relaxation, as long as all entries of
1 are integer. The Network Simplex algorithm [Orlin 1997] can
efficiently find such solutions, exploiting the graph structure to
improve performance compared to the more general classic simplex
algorithm [Dantzig 1951, 1963].

?

So far, we have ignored the problem of
combining per-patch flow network pieces
into a consistent global network. An implicit
patch orientation dictates which patch sides
receive inflow or provide outflow. Our flow
network extends to the entire T-mesh if we
can find an orientation for each patch, such
that its outflow edges match up with the inflow edges of adjacent
patches and vice versa. Unfortunately, this is not always possible.
Take Mitchell’s 2-1 radish [Mitchell 2021], illustrated in the inset, as
an example: Nomatter howwe try to orient our network edges, there
will always be two patches that demand conflicting orientations for
their common arc, i.e., inflow or outflow from both patches.

This observation implies thatmodeling T-mesh quantization using
network flows requires generalizing classical flow problems.

1.4 Min-deviation quantization as bi-directed flow
problem

Bi-directed networks are a suitable generalization: In addition to
regular directed edges, they also admit edges that have two heads
or two tails [Edmonds and Johnson 1970; Edmonds 1967; Lawler
1976], which solves the orientation problem outlined above.

The first row of Figure 4 illustrates our choice of graphical no-
tation. Intuitively, applying one unit of flow through a head-head
edge adds one unit to each incident node, while one unit of flow
through a tail-tail edge removes one unit from each. The analogies

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

4 • Martin Heistermann, Jethro Warnett, and David Bommes

tail-head head-head tail-tail neg. loop pos. loop

B
id

ir
ec

te
d

ed
ge

v w v w v w v v

D
ou

bl
e

co
ve

r

v+

v−

w+

w−

v+

v−

w+

w−

v+

v−

w+

w−

v+

v−

v+

v−

b-
M

at
ch

in
g vi

vo

wi

wo

vi

vo

wi

wo

vi

vo

wi

wo

vi

vo

vi

vo

Fig. 4. Types of bi-directed edges and their representation in the double
cover MCF as well as the 1-matching instance

describing flows in simply directed networks, such as fluid in a pipe
network, do not directly apply anymore. However, we can imagine
a tail-tail edge to contain a special sink that always takes the same
amount from each incident node and a head-head edge to contain a
special source that sends flow equally to both nodes.

With these additional edge types, we can model the constraints of
our example problem as a bi-directed MCF (Bi-MCF) problem. How-
ever, the resulting constraint matrix – now the node-edge incidence
matrix of a bi-directed graph – generally is not totally unimodular
anymore.

Luckily, weaker properties that still hold for these matrices, which
belong to the class of binet2 matrices: If all entries of both the right-
hand side 1 and the variable bounds D, ; are integer, the vertices
of the linear program’s feasible region polytope – its basic feasible
solutions (BFS) – are always at half-integer coordinates, i.e., each
entry is in 1

2Z [Bolker and Zaslavsky 2006]. If 1, D, and ; consist
only of even integers, all BFS are fully integer [Appa and Kotnyek
2000; Appa et al. 2007; Hochbaum 2004; Kotnyek 2002].

The (half-)integrality of BFS implies the existence of (half-)integral
optimal solutions because every optimal value can be attained at a
BFS.

1.5 Overview
After an overview of the related work on both T-mesh quantiza-
tion and solving relevant optimization problems in Section 2, we
define the Bidirected Minimum Deviation Flow (Bi-MDF) problem
in Section 3, which generalizes the MCF framework to per-edge
convex cost functions, and discuss various methods to solve Bi-MDF
problems both approximately and exactly. Section 4 covers Bi-MDF
modeling of various T-mesh quantization problems, including arc-
and half-arc quantization of quadrangular T-meshes with support
for patch collapses limited by separation constraints, as well as
polygonal T-mesh quantization with multiple objectives. An empir-
ical evaluation in Section 5 demonstrates the practical efficacy of
our methods.

2not related to the mathematician Jacques Binet

2 RELATED WORK

2.1 Patch layout quantization for quad meshing
2.1.1 CAD meshing. The earliest works known to us that we would,
in retrospect, categorize as T-mesh quantization aim at meshing
CAD models that are non-conforming assemblies of topologically
polygonal patches.

Tam and Armstrong formulate a quantization problem to produce
quad meshes from polygonal input meshes [Tam and Armstrong
1993]. They minimize a weighted sum of absolute deviations from
target lengths under per-patch linear constraints that ensure me-
shability. The resulting ILP is solved using Gomory’s cutting plane
algorithm.
Scott Mitchell has been developing and publishing a series of

algorithms for the Interval Assignment problem, a generalization
of the quantization problem that also encompasses assigning edge
lengths to polyhedral complexes to facilitate hexahedral meshing
of volumes. Notably, he utilizes multi-objective optimization in the
form of lexicographic minimization as opposed to a single objec-
tive consisting of a sum of per-edge energies. This line of research
includes Branch & Bound IIA [Mitchell 2000], which utilizes mul-
tiple rounds of optimization to minimize a linear objective, and
Nonlinear Interval Assignment [Mitchell 2013], which uses a more
conventional sum-of-cubes objective, augmented by a secondary op-
timization with a piecewise linear objective in local neighborhoods.
The most recent work, Incremental Interval Assignment [Mitchell
2021], applies integer linear algebra first to find a feasible solution
for the linear constraint system, which is subsequently improved
by adding integer vectors of the system’s null space obtained from
a reduced row echelon form of the constraint matrix. Optimality
and feasibility with respect to variable bounds are not guaranteed,
but feasible solutions of sufficient quality are obtained quickly in
many practical cases, according to the author.

A number of works by Müller-Hannemann, Möhring, and Weihe
have the closest relation to our approach for modeling quantization
problems:They construct a flow problem on a bi-directed graph from
per-patch templates where flows on dual mesh edges correspond
to the number of subdivisions of the primal edge. Templates are
selected based on patch geometry and potentially replaced by more
general emergency templates to treat infeasibility in an iterative
process [Möhring et al. 1995; Möhring et al. 1997]. Alternatively,
more complex general templates can be employed from the start,
which do not require the iterative process of choosing appropri-
ate templates [Müller–Hannemann 2000]. The latter paper utilizes
piecewise-linear convex cost functions to penalize deviations from
target lengths, albeit with fixed upper bounds. In contrast to our
work, their approach always quantizes arcs to at least one. It is thus
not directly applicable to quantization schemes that rely on the
structural simplifications facilitated by this extension. The weighted
1-matching problems resulting from this process are solved either
using the commercial ILP solver CPLEX, custom heuristics, or, in
later works, a custom exact solver.

2.1.2 Quantized Global Parameterization and extensions. In recent
years, much focus has been on frame-field-based methods to create
quad meshes from unstructured input data, such as triangle meshes.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 5

Campen et al. developed theQuantized Global Parameterization
(QGP) algorithm, an automatic quad meshing method that extracts a
quadrangular T-mesh from a “seamless” parameterization by means
of the motorcycle graph [Eppstein et al. 2008], which is then quan-
tized using a custom heuristic to finally produce a conforming quad
mesh [Campen et al. 2015]. Notably, their methods allow for struc-
tural simplification by collapsing T-mesh patches when some of
their sides are quantized to zero length. This is especially helpful
in eliminating thin quad strips that arise as artifacts from T-mesh
generation.
Allowing quantizing to zero, however, necessitates separation

constraints that enforce strictly positive distances in parametric
space between singularities, boundaries, and features to prevent
degenerate results. In the first stage, QGP iteratively adds integer
vectors from the constraint matrix null space (corresponding to a
subset of circuits in a bi-flow network representation) to an initial
all-zero solution until each edge is assigned a strictly positive length,
trivially achieving feasibility w.r.t. separation constraints. Subse-
quently, further integer null space vectors are added and subtracted
that improve the quadratic objective function while only allowing
steps that do not violate separation constraints, thus preserving
feasibility. For fine target mesh resolutions, this process takes a long
time, however, this could at least partially be ameliorated by adding
multiples of the null space vectors.
Lyon et al. extend QGP to compute coarse quad layouts by first

computing an extended version of themotorcycle complex, onwhich
they then formulate quantization as an ILP [Lyon et al. 2021a]. Their
method aims to find the coarsest layout that fulfills hard constraints
which imply upper bounds on the angular deviation between mesh
edge directions and the gradient of the input seamless map. A single
parameter U , specifying the tolerated angular deviation, allows a
user to balance layout complexity and geometric fidelity.
In a later work, they managed to relax separation constraints

to allow limited merging of singularities to simplify the resulting
layout [Lyon et al. 2021b]. This relaxation also allows quantizing
T-meshes obtained from tracing the motorcycle graph directly in
a frame field without having to explicitly modify the T-mesh to
ensure the existence of a feasible quantization solution as proposed
by Myles et al. [Myles et al. 2014].
The authors’ formulation of separation constraints proves very

useful for our new modeling approaches: A simple non-zero path
constraint (i.e., T-mesh paths that may not be quantized to a sum of
zero) for each motorcycle trace is sufficient (albeit not necessary) to
prevent undesired collapses. This greatly simplifies the handling of
separation constraints.

This approach to quad layout generation is also helpful for coars-
ening existing quad meshes: Couplet et al. apply it to T-meshes
generated from unstructured quad meshes to obtain coarse quad
layouts for higher-order meshes [Couplet et al. 2021].

2.1.3 Quantization of polygonal T-meshes. QuadMixer [Nuvoli et al.
2019] performs polygonal T-mesh quantization for localized quad
meshing to complete a partial quad mesh obtained from Boolean-
like blending operations between input quad meshes. The problem
is modeled as IQP to assign strictly positive integer lengths to each
T-mesh arc before tessellating each T-mesh patch according to these

assigned lengths. Apart from fixed values on boundaries that en-
sure conformity with existing quad patches, the only other hard
constraint is an even boundary length for each patch to ensure the
existence of a tessellation. The objective is a weighted sum of an
isometry term that penalizes deviation from target lengths and a
regularity term for quadrilateral T-mesh patches that favors regu-
lar tessellations. An optional fallback to a simpler ILP formulation
improves runtime in complex cases.

The recent quad-meshing tool QuadWild [Pietroni et al. 2021] de-
composes the input mesh into a field-aligned polygonal quad layout,
which is quantized using an improved version of the QuadMixer
IQP. The authors extend the regularity term to discourage the for-
mation of more than one singular vertex in non-quad patches and
add a more global singularity alignment term to minimize the re-
sulting layout complexity. Additionally, violated soft constraints are
removed in a second round of optimization to improve result quality.
To achieve acceptable runtimes for large and complex inputs, they
partition the input surface into contiguous subsets that are solved
individually after fixing their shared boundaries. An early-abort
heuristic further prevents excessive solver runtimes by accepting
sub-optimal solutions based on a function of runtime and optimality
gap.

Note that a T-mesh quantization does not uniquely define a quad-
rangulation: additional singular vertices allow for an infinite number
of patch tessellations. Multiple methods have been proposed to find
suitable patch tessellations using topological and geometric objec-
tives, e.g., using ILP solvers [Peng et al. 2014; Takayama et al. 2014]
or a data-driven approach selecting tessellations from a database
[Marcias et al. 2015], allowing for fine-grained user control.

2.1.4 Hexahedral meshing. Brückler et al. extend T-mesh quantiza-
tion to the volumetric case, quantizing 3D motorcycle complexes
created from seamless maps [Brückler et al. 2022b] to robustly ob-
tain hexahedral meshes using IQP. Their method allows greater
flexibility by permitting negative quantizations as long as these do
not cause inversions. This extension could also be applied to the 2-D
case and parallels the half-arc quantization approach we introduce
in Section 4.3.

2.1.5 Flows and matching for quad meshing. Huang et al. developed
QuadriFlow [Huang et al. 2018], an extension to the Instant Field-
Aligned Meshes method [Jakob et al. 2015], aiming to minimize the
number of singular vertices. They set up an ILP that modifies the
position field to eliminate singularities while minimizing length
deviations. Not mentioned by the authors, their ILP corresponds
to a Bi-MCF problem. They approximate it as an MCF problem by
balancing as many edges as possible (corresponding to partially
orienting the bi-directed network), then replacing the variables
corresponding to non-orientable edges with constant values. For
large inputs, they further approximate an MCF solution by instead
solving a maximum flow problem. Our problem formulations and
algorithms could be used to solve their ILP exactly.
Razafindrazaka et al. utilize perfect matching problems with ad-

ditional conflict pair constraints to derive coarse quad layouts from
frame fields, parameterizations [Razafindrazaka et al. 2015], or an
existing quad mesh [Razafindrazaka and Polthier 2017]. In contrast

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

6 • Martin Heistermann, Jethro Warnett, and David Bommes

to our method, the matching problems they construct directly target
singularity connectivity.

2.2 Solving Bi-MCF and 1-matching problems
A usual first step in solving Bi-directed flow problems, or equiva-
lently, 1-matching problems [Edmonds and Johnson 1970; Edmonds
1967], is the computation of a feasible approximation from the solu-
tion of a half-integer relaxation of the problem, often referred to as
fractional jump-start.
Anstee introduced a method to obtain such a half-integer opti-

mal solution3 to a non-perfect weighted 1-matching problem that
involves the construction of an MCF problem in a bipartite directed
graph, as well as a rounding procedure that can be used to transform
any such half-integer solution into an all-integer feasible solution
that can then be used as a good starting point to solve to optimality
[Anstee 1987].

To obtain half-integer super-optimal solutions to certain classes of
linear programs that include Bi-MCF problems, Hochbaum proposes
a monotonization approach that constructs an MCF problem on a
directed double cover graph of the bi-directed network [Hochbaum
2004] without an intermediate reduction to 1-matching. This results
in a smaller MCF problem compared to Anstee’s method. If all
bounds and 1 entries are even, her method can obtain the integer
optimum. We will refer to this approach as symmetric double cover.
Medvedev and Brudno apply her approach in a genome assembly
algorithm and report satisfactory results [Medvedev and Brudno
2009].

Finally, Müller-Hannemann and Schwartz describe a flexible soft-
ware design for a 1-matching algorithm using a fractional jump-
start followed by Pulleyblank’s algorithm [Müller-Hannemann and
Schwartz 2000; Pulleyblank 1973] and provide empirical results on
tests of multiple design choices [Müller-Hannemann and Schwartz
2001], however, unfortunately, did not publish their code.
For this reason, we cannot directly compare the performance of

their solver implementation with ours. However, our less direct
approach has the considerable advantage of not only producing a
feasible approximation quickly, but also providing strictly improving
solutions iteratively, making it suitable even for large-scale problems
whose exact solution is not practical anymore. Additionally, our
iterative approach can solve problems with unbounded edges, which
cannot be reduced to a finite 1-matching instance in one step.

2.3 Contributions
(1) We define the Bi-directed Minimum-Deviation Flow (Bi-MDF)

problem – a generalization of Bi-MCF – as a convenient prob-
lem representation well-suited for our needs and demonstrate
multiple ways of using it to express various quantization prob-
lems;

(2) A novel fast approximation method (asymmetric double cover)
for Bi-MDF problems delivers feasible integer approximations
as an extension to Hochbaum’s monotonization procedure,
which can be used directly or serve as initial solutions for
exact solvers;

3For all-even 1, this can also be used to find the integer optimum

(3) A fast and straightforward rounding algorithm to obtain Bi-
MCF problems with even right-hand sides and bounds from
Bi-MDF problems that are suitable for computing integer
solutions with double-cover-based solvers;

(4) A novel, easy-to-implement iterative refinement algorithm
that solves Bi-MDF exactly, which relies on reductions to the
Weighted Perfect Matching (WPM) problem, for which (open
source) implementations are readily available;

(5) An open-source C++ library, libSatsuma4, implements both
our approximate and exact algorithms for general Bi-MDFs;

(6) Half-arc quantization as an expansion of the feasible region
of quantization problems that is also especially well suited to
handle separation constraints in Bi-MDF formulations.

Our contributions obviate the need for either commercial ILP/IQP
solvers or the intricate implementation of a direct 1-matching solver
to solve T-mesh quantization problems while delivering vastly better
runtime performance than more general-purpose ILP/IQP solvers
achieve for the same inputs.

We demonstrate the use of Bi-MDF in meshing pipelines based on
quadrangular T-mesh quantization [Campen et al. 2015; Lyon et al.
2021a] using either a greedy selection of separation constraints
or our half-arc quantization extension. Furthermore, we publish
an open-source extension to the QuadWild [Pietroni et al. 2021]
implementation, which solves Bi-MDF instead of IQP problems,
significantly improving its runtime. As an additional advantage,
the now optional dependency on the Gurobi solver paves the way
for packaging the software in open-source software packages such
as Blender.

3 FLOWS IN BI-DIRECTED NETWORKS
In Section 1, we modeled a simple quantization problem as a Bi-
MCF problem. To simplify modeling for more complex real-world
problems, we will define the Bi-directed MinimumDeviation Flow (Bi-
MDF) problem, a generalization of Bi-MCF problems more amenable
to expressing quantization objectives.
We solve such Bi-MDF problems by first constructing feasible

approximate solutions using reductions to a standard MCF prob-
lem via an intermediate Bi-MCF problem. An iterative refinement
algorithm subsequently solves to optimality by utilizing a series of
reductions towards a Weighted Perfect Matching (WPM) problem in
each step.

A series of illustrations of the individual algorithmic steps for solv-
ing a simple Bi-MDF instance derived from a quantization problem
(Mitchells’ 2-1 radish, Figure 6) exemplify the reduction pipelines.

3.1 Bi-directed networks
As mentioned in the introduction, bi-directed networks generalize
directed networks (graphs) by allowing edges with two heads or two
tails in addition to usual edges with one head and one tail. The top
row of Figure 4 illustrates the allowed edge types. Note the omission
of uni-directed self-loops E → E – they have no effect, as any flow
through such edges moves an equal amount out of and into E .

4Available at https://www.algohex.eu/publications/bimdf-quantization

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://www.algohex.eu/publications/bimdf-quantization
https://www.algohex.eu/publications/bimdf-quantization

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 7

Definition 3.1. A bi-directed network (+ , �, f) consists of a vertex
set + = {E1, . . . , E=}, an edge set � = {41, . . . , 4<}, and an incidence
function f : + × � → {−2,−1, 0, 1, 2}.

We identify the function f with a matrix f ∈ {−2,−1, 0, 1, 2}=×<
for notational convenience. Viewed as an undirected (multi-)graph,
(+ , �) may contain self-loops and multiple distinct edges joining the
same pair of vertices. f (E, 4) determines the incidence relationship
of edge 4 at vertex E : If 4 and E are not incident, f (E, 4) = 0. For a
non-loop 4 , f (E, 4) = 1 if 4 has a head, or conversely, f (E, 4) = −1
if 4 has a tail at E . In case 4 is a loop of E , a value of 2 denotes a
positive loop with two heads, and a value of −2 corresponds to a
negative loop with two tails.
These options are formalized succinctly as

∀4 ∈ � : 0 <
∑
E∈+
|f (E, 4) | ≤ 2, (12)

i.e., each edge only has one or two ends. Note that this allows for
non-loop edges that are incident to only one vertex with f (E, 4) = 1
– these we denote outer-edges [Chen 2021].

The matrix f belongs to the class of binet matrices [Appa and
Kotnyek 2000; Appa et al. 2007; Kotnyek 2002].
Graphically, we represent an edge 4 as

E −→ F, iff f (E, 4) = −1 and f (F, 4) = 1,
E →← F, iff f (E, 4) = −1 and f (F, 4) = −1,
E ←→ F, iff f (E, 4) = 1 and f (F, 4) = 1,
E −→ , iff f (E, 4) = −1 and ∀E ′ ≠ E : f (E ′, 4) = 0, or
E ←− , iff f (E, 4) = 1 and " .

The latter two edge types correspond to the outer-edges mentioned
earlier.

3.2 Flows in bi-directed networks
Definition 3.2. A circulation of a bi-directed network (+ , �, f) is

an assignment 5 ∈ Z |� | of integer flow values to the network edges,
such that the incoming and outgoing flows at each node cancel each
other out:

∀E8 ∈ + :
∑
4 9 ∈�

f (E8 , 4 9) · 59 = 0. (13)

For a given circulation 5 , the amount of flow entering a node = is
called the throughflow C (=) of the node:

C (=) :=
∑
4 9 ∈�,

f (E=,4 9)>0

f (E=, 4 9) · 59 . (14)

A circulation is conformally decomposable if it is the sum of non-
zero circulations which share the same sign on all common non-
zero edges. Otherwise, we call it a circuit flow. As an example,
Figure 9a shows a flow 6 that is conformally decomposable into
circuit flows 6

2 +
6
2 . Other decompositions include 6 = 6 + 0 and

6 = 26 + (−6), but neither decomposition is conformal. It can be
shown that the maximum node throughflow of a circuit flow never
exceeds two [Chen et al. 2017; Kotnyek 2002]. This fact will be
helpful in developing and analyzing our exact iterative solver.

Definition 3.3. A pseudo-flow of a bi-directed network (+ , �, f)
with lower bounds ; ∈ N |� |0 and upper bounds D ∈ (N0 ∪ {∞}) |� |

for the flow on each edge is an assignment 5 ∈ R |� | that satisfies
these bounds, i.e., ; ≤ 5 ≤ D holds component-wise.

Definition 3.4. A pseudo-flow 5 is feasible (or just a flow) if the
flow conservation condition

∀E8 ∈ + :
∑
4 9 ∈�

f (E8 , 4 9) · 59 = 18 (15)

holds for per-vertex demands 1 ∈ Z |+ | , i.e., the net inflow for each
node corresponds to its demand.

Note that the difference between two integer flows (i.e., flows in
N
|� |
0) is always a circuit. The equivalence to f · 5 = 1 by treating f

as a matrix shows the relation between flow problems and linear
problems. In the theory of linear programming, vertices of the poly-
tope forming the feasible region, determined by per-edge bounds
and Eqn. 15 are called basic feasible solutions. In MCF problems on
directed graphs, these basic feasible solutions are always integer
due to the total unimodularity of the node-edge incidence matrix.
In Bi-MCF problems, our matrix is not totally unimodular, but binet
– and thus every basic feasible solution is half-integer [Appa and
Kotnyek 2000; Appa et al. 2007; Bolker and Zaslavsky 2006].

3.2.1 Elimination of outer-edges. Bi-flow networks can be assumed
to contain no outer-edges. This is not a proper restriction, as we can
always obtain an equivalent problem without outer-edges using the
following procedure:
Add an additional node m with zero demand and an unbounded

zero-cost tail-tail self-loop. Add m to each outer-edge 4 as second
incident node with f (m, 4) = 1. With this construction, m can only
sink even amounts of flow. The parity sum of flows into m always
corresponds to the parity of the sum of all node demands. Therefore,
if that parity is odd, we set the demand of m to one instead.

3.3 Bi-directed minimum-cost flow
The Bi-directed Minimum Cost Flow problem (Bi-MCF) [Appa et al.
2007; Edmonds and Johnson 1970; Edmonds 1967; Gabow 1983;
Lawler 1976] is to find a feasible flow 5 that minimizes

�mcf (5) =
∑
48 ∈�

l8 · 58 = l) 5 . (16)

for a weight function l : � → R. Further constraining the flow to
be integer on every edge yields the Integral Bi-MCF problem.

3.4 Bi-directed minimum-deviation flow
Extending linear costs per edge to per-edge separable convex func-
tions is a natural generalization of Bi-MDF problems. Some authors
refer to this as a convex min-cost bi-flow problem [Medvedev and
Brudno 2009]. However, that term neither conveys that the cost
function is separable into per-edge convex functions nor that the
problem actually is non-convex due to the implied integer con-
straints.
We will consider a slightly weaker extension, where the convex

cost function 24 of each edge 4 must attain a (not necessarily unique)
minimum value at a parameter we denote the target of this edge.
This excludes functions such as G ↦→ 1/G for unbounded edges. We
can then understand 24 to measure the cost of deviations from the

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

8 • Martin Heistermann, Jethro Warnett, and David Bommes

target 4 . Therefore we will succinctly refer to such problems as the
Bi-directed Minimum Deviation Flow problem (Bi-MDF).

Formally, a Bi-MDF problem is a bi-directed flownetwork equipped
with convex per-edge cost functions 24 : R→ R, with the goal of
finding a feasible flow that minimizes

�mdf (5) =
∑
4∈�

24 (58) . (17)

For 28 (G) = l8G we obtain Bi-MCF problems as special cases.

3.5 Reducing Bi-MDF to Bi-MCF
The difference between the Bi-MDF and Bi-MCF problems lies solely
in the more limited cost function of Bi-MCF. While Bi-MDF allows
for arbitrary convex per-edge costs, Bi-MCF costs are always linear.

Given a Bi-MDF instance" , we construct a Bi-MCF problem"′

which exactly represents the feasible region but whose cost function
is equivalent merely in a region 6 −* ≤ 5 ≤ 6 +* centered around
a given pseudo-flow 6 ∈ N |� |0 for a maximal deviation * ∈ N. We
introduce the deviation limit to keep the size of the resulting Bi-MCF
problem finite and linear in the size of the Bi-MDF instance and
* . Cost equivalence is only required to hold under minimization:
Any optimal solution to the Bi-MCF problem that deviates from 6

by not more than* units on every edge corresponds to a Bi-MDF
flow with identical cost.

We first create a modified split Bi-MDF problem centered around
6 that is exactly equivalent to the original problem. In the second
step, we transform it into Bi-MCF form.
We split up a flow 5 into components 5 = 6 + 5 + − 5 − , where

5 +, 5 − ≥ 0 model positive and negative deviation from 6. The
bounds ; ≤ 5 ≤ D are reflected in bounds 5 − ≤ 6− ; and 5 + ≤ D −6.

Algebraically,�5 = 1 becomes�5 + −�5 − = 1 −�6. Graphically,
each original edge 4 gets replaced by an identical edge 4+ (forming
�) and a reversed edge 4− (forming −�). We denote 1 −�6 as flow
demand vector 1′: Applying 5 + and 5 − shall result in a net flow per
vertex that counteracts the imbalance caused by applying 6 on top
of the existing right-hand side 1. The total cost of flow through both
edges is given by

2′4 (5 +, 5 −) = 24+ (5 +4) + 24− (5 −4) + 24 (64), (18)

with the per-edge cost functions

24+ (5 +4) = 24 (64 + 5 +4) − 24 (64) (19)
24− (5 −4) = 24 (64 − 5 −4) − 24 (64) . (20)

Theorem 3.5. The split Bi-MDF problem "′ is equivalent to "

under optimization.

Proof. For 5 +4 = 0 or 5 −4 = 0, 2′4 (5 +4 , 5 −4) = 24 (64+5 +4 −5 −4) holds,
i.e., costs are equivalent when only one arc carries flow. It is left
to show that when simultaneously sending flow in both directions,
2′4 (5 +, 5 −) ≥ 24 (6+5 +−5 −) still holds, i.e., we cannot underestimate
the objective function.

The slope of a secant to the left of a point on the graph of a scalar
convex function cannot exceed the slope of a secant to its right side.

Therefore, with X ≥ 0, we have
24 (64+5 ++X)−24 (64+5 +)

X
≥ 24 (64)−24 (64−X)

X
⇐⇒ 24 (64 + 5 + + X) + 24 (64 − X) ≥ 24 (64) + 24 (64 + 5 +)
⇐⇒ 2′4 (5 + + X, X) ≥ 2′4 (5 +, 0)

Due to symmetry, this suffices to show that 24 is not under-estimated.
�

We now have a Bi-MDF problem that computes the cost of devi-
ations from 6, in which every lower bound is zero, and 24± (0) = 0.
This more restricted set of cost functions in the intermediate Bi-
MDF now simplifies their representation in the Bi-MCF objective
function.

As Bi-MCF per-edge costs are linear functions of the flow, assign-
ing a positive cost value to each edge already yields a Bi-MCF that
penalizes deviation from 6. To represent the full range of convex
cost functions, we need another transformation, where multiple
parallel copies with a capacity of D4 = 1 and individual costs replace
each edge 4 . This transformation procedure is well-established for
MCF problems on directed graphs [Ahuja et al. 1984, 1993; Minoux
1986], and the constructions directly extend to bi-directed graphs.

Consider a convex function 2 (G) : R≥0 → R, 2 (0) = 0 in the
intermediate Bi-MDF. We define 2̂ : [0,*] → R as a piecewise
linear approximation (cf. Figure 5):

2̂ (G) = min
f

*∑
8=1

l8︷ ︸︸ ︷
(2 (8) − 2 (8 − 1)) 58 (21)

s.t. G =

*∑
8=1

58 , (22)

0 ≤ 58 ≤ 1 (23)

Due to the convexity of 2 , l8 ≤ l8+1 holds. Therefore for a given G

in the domain of 2̂ , the minimum value can be attained by setting
51 . . . 5bG c = 1, 5dG e = G − bGc and the rest to 0. This corresponds
to an allocation of G units among the variables G8 that starts at the
lowest-cost variable, using much capacity as possible before moving
on to the next more expensive variable until G is fully distributed.
For integer G , with this assignment, the sum in (21) simplifies

to
∑G
8=1 l8 = 2 (G) − 2 (0) = 2 (G), thus 2̂ is equal to 2 for all integer

arguments in its domain.

v w

e1

e2

e3

e4As we are only interested in integer solutions to
the MCF, we can represent the objective function
exactly in the range [0,*], using up to* duplicates
48 of an edge, each one with a capacity of 1 and a
cost of l8 , carrying 58 units of flow. We pick *8 as the minimum of
a global * parameter for the reduction and the per-edge capacity
D (48). If several l8 are identical, we combine their corresponding
arcs, summing up the capacities.

We can increase the capacity of the last edge 4*8
by the remaining

(possibly infinite) capacity of D −* to exactly preserve the feasible
region at the cost of not modeling costs correctly for flow values
above* .

Thus for a Bi-MDF problem, a pseudo-flow 6 and an upper bound
* , we can construct an equivalent Bi-MCF (with the same number

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 9

x

c(x)

ℓ
0−2

c(−2)

−1

c(−1)

1
c(1)

2

c(2)

3

c(3)

c(0) c(0)

a−2

a−1

a1
a2

a3

Fig. 5. Representing a convex function with flow costs, 6 = 1.

4

0.7

0.4
0.2

(a)

c

b

a∂

0.2

0.4

0.7

4
0

(b)

Fig. 6. Modeling example: (a) Mitchell’s 2-1 radish T-mesh [Mitchell 2021]
with target lengths ℓ for some of the arcs. (b) One connected component
of the corresponding Bi-MDF problem, obtained using the simple template.
Lower bound D is 1 for m ←→ 0, otherwise zero.

of nodes and up to 2* as many arcs, fewer for linear or absolute
cost functions) that represents the same feasible set, preserves costs
under minimization for flows 5 with 6 − * ≤ 5 ≤ 6 + * , and
approximates the objective function with constant slope beyond
±* .

3.6 Bi-MCF and Bi-MDF approximation via double cover
We obtain approximate solutions for Bi-MDF problems using a
double cover approach. These approximations can either serve as a
feasible starting point for an exact solver (Section 3.7) or be used
directly if speed is more important than accuracy.

The basic idea is to create a copy E− of each node E with negated
f ; this allows us to connect them using only directed edges by
appropriately choosing negated and non-negated endpoints.
Hochbaum describes lifting a Bi-MCF problem " = (1, ;,D, l)

on a bi-directed graph � = (+ , �, f) to a MCF problem "′ =

(1, ; ′, D′, l ′) on a directed graph � ′ = (+ ′, �′) [Hochbaum 2004].
� ′ consists of twice the amount of nodes and edges of � , and the
solutions of "′ directly relate to the solutions of " . We refer to
"′ as a double cover of " . Figure 7 illustrates the result of this
construction.
For each node E in + , + ′ contains vertices E+ and E− . For each

bi-directed edge 48 ∈ �, �′ has two edges as follows (cf. Figure 4):
• 48 = E −→ F : Add 40

8
= E+ → F+ and 41

8
= F− → E−

• 48 = E ←→ F : Add 40
8
= E− → F+ and 41

8
= F− → E+

• 48 = E →←F : Add 40
8
= E+ → F− and 41

8
= F+ → E−

c

b

a∂ 0.6

0.2

0.4

1

0

(a)
c

b

a∂ 0

0

0

4
0

(b)

0

0

−4−4 1;∞ 0.8; 2

1;∞

0.3; 2

1;∞

0.6; 2

0;∞ 1; 3

1;∞

(c)

2

∂−

2

a−

0

b−

0 c−

−2

∂+

−2

a+

0 b+

0

c+

0.81

0.6

1

0.8 1

0.3

1

1

1

0.6

1
0.3

1

1

1

0

(d)

Fig. 7. Double cover construction: (a) T-join problem for finding a minimal 6
adjustment for even right-hand sides. Grey nodes form the set) ; edge labels
indicate adjustment cost. The bold edges are a minimum spanning tree; the
red edge is the approximate T-join solution. (b) Even pseudoflow 6 resulting
from parity adjustment to initial target lengths (c) Bi-MCF problem using 6:
Node labels indicate demands 1 = f6, edge labels show costl and capacity
D. (d) Induced asymmetric double cover. Node labels again indicate demand;
edges are labeled with costs. Thin edges have D = 1, medium edges D = 2,
and thick edges D = ∞.

Note that the sign f of the new edges at D+ is f (D, 4), while it is
−f (D, 4) at D− (for D ∈ {E,F}).

Vertex demands 1′, edge costs l ′, and bounds ; ′, D′ are inherited
from the corresponding nodes and edges in" ; however, demands
are negated for E− nodes. A feasible flow 5 on" directly translates
to a feasible flow 5 ′ on"′ by setting 5 ′ (40

8
) = 5 ′ (41

8
) = 5 (48). Con-

versely, a feasible flow 5 ′ on"′ translates to a feasible half-integer
flow 5 on" with 5 (48) = 1

2

(
5 ′ (40

8
) + 5 ′ (41

8
)
)
. The objective value

is preserved with a scale factor of two in either direction. Translat-
ing an optimal solution on "′ thus yields an optimal solution for
the real-valued relaxation of" , but not necessarily for" when we
include integer constraints.

3.6.1 Even right-hand side and bounds. We denote a Bi-MCF prob-
lem" as even if its demands 1, lower bounds ; , and upper bounds
D all consist only of even entries. In this case, the basic feasible
solutions of"′ are integer and even, and the corresponding BFS of
" are always integer.
We can obtain such a basic solution for "′ using the network

simplex method and thus obtain an integer optimal solution for" .
Equivalently, we can halve all entries 1, ; , D in the double cover,

find any (potentially non-basic) integer optimal solution, and subse-
quently double the resulting flow on"′ for an integer solution. This
perspective ultimately allows for our asymmetric generalization of
the double cover approach.

3.6.2 Parity adjustment. In general, our problem instances do not
only contain even values. To allow the creation of the double cover,
we slightly modify the input Bi-MDF to ensure even parity before
reducing it to Bi-MCF. This is different from directly adjusting the
Bi-MCF problem: a naive rounding procedure here would generally
not result in solutions feasible for the original Bi-MDF.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

10 • Martin Heistermann, Jethro Warnett, and David Bommes

We perform the following constructions independently for each
connected component of the bi-directed graph. Thus, w.l.o.g., we
assume it to consist of a single connected component.
Let us first look into making the per-node demands 1 even. Re-

member1 = −�6 for a pseudo-flow6, whichwe interpret as an initial
guess. Let64 be an integer in the interval [;4 , D4] closest to the target
length ℓ4 . We aim to find an adjusted 6̃ = 6+X with a minimal change
X ∈ {−1, 0, 1} |� | , such that 1̃ = −f6̃ = −f (6 + X) only has even en-
tries. A simple solution would be choosing 6̃4 = min;≤2:≤D 24 (2:),
i.e., adjusting each entry of 6 to the even number resulting in the
lowest cost. However, an all-even 6 + X is sufficient but not nec-
essary for even 1̃. In our application, it can be especially hurtful
for coarse quadrangulations, as we could represent neither target
lengths around 1 nor lower bounds of 1 properly. Additionally, this
method requires ; < D for every edge with odd 64 , so a ±1 adjust-
ment is even possible.
Note that the parity (1E mod 2) of a node E is determined by the

parity of the sum of 64 for incident edges 4 , independent of their
orientation. Let) ⊆ + be the set of vertices E for which f · 6 is
odd. Any edge with any odd entry in f must have exactly two odd
entries; therefore, by the handshake lemma [Euler 1736], |) | must
be even. Denote by f̂ = (+ , �) the undirected node-edge incident
matrix of the Bi-MDF network (excluding loops). Given a subset �
of edges such that the set of vertices of odd degree in the sub-graph
(+ , �) is exactly) , adjusting the target lengths of the edges in � by
±1 will result in a flow problem with even demands. Increasing or
decreasing the target length by one unit is equivalent for parity, so
for each edge, we can independently pick the preferred adjustment
direction based on feasibility and cost function changes. To guide
the search for a suitable � beyond the defining hard constraint,
we define a per-edge adjustment cost function 20 : � → R, 4 ↦→
min 24 (64 ± 1) − 24 (64). Finding a feasible � that minimizes 20 (�)
is known as the) -join problem or matching with parity constraints
[Edmonds and Johnson 1973].

Note that if the network admits any feasible flow 5 , a T-join exists:
f 5 − 1 is zero; thus f̂ 5 − 1 is even, and the odd elements of 5 − 6
form a feasible – but generally not optimal – T-join.

Solving T-Join problems. It is possible to determine an optimal) -
join in polynomial time by computing a minimum-weight matching
on a complete graph of) with edge weights corresponding to costs
of shortest paths in (+ , �) [Edmonds and Johnson 1973]. Berman
et al. give a more efficient, albeit more complex, construction for
sparse graphs [Berman et al. 1999].

In our application, we chose to use a very simple approximation
algorithm instead to obtain a not necessarily optimal) -join in near-
linear time. We compute a minimum-weight spanning tree using the
adjustment costs 20 as weights. For a given spanning tree with edges
(⊆ �, there is a unique) -join � ⊆ (, which we can determine in
linear time. Figure 7a shows the T-join problem and its approximate
solution.

Conceptually, this algorithm can be viewed as incrementally con-
structing � while iteratively removing leaf nodes from the tree until
it is empty. In each iteration, if the valence of E in (+ , �) needs to
be adjusted, we add its (sole) incident edge 4 to � .

For an efficient implementation, we do not need to modify the
tree but can instead find a suitable vertex ordering by depth-first
search, as illustrated in Algorithm 1 in the appendix.

A linear algebra view on this algorithm is elucidating: A spanning
tree of an undirected connected graph corresponds to a selection
of |+ | − 1 linearly independent columns of its node-edge incidence
matrix f̂ . This forms a basis � for its column space, corresponding to
all possible node adjustments. If we represent subsets � of � by an
indicator vector �� ∈ {0, 1} |� | , then � is a) -join iff f̂ · � � = �) holds
over the finite field �� (2). If a) -join exists, the basis � uniquely
determines a solution. � consists of = rows but only = − 1 columns.
We turn it into a full basis �′ by adding a special column with a one
in an arbitrary row and zeroes everywhere else. As each column
of � only has two non-zero entries, we can permute the rows and
columns of �′ into an upper triangular matrix and perform back-
substitution to solve the system. The solution entry corresponding
to our special column will be zero iff the desired adjustment is in
the span of �.
Algorithm 1 implements this back-substitution directly in the

graph representation without explicitly constructing � or �′. Note
that similar ideas of using a spanning tree as a vector space basis
are part of various classic graph algorithms, such as the network
simplex algorithm [Orlin 1997].

Note that in contrast to rounding each edge target to the nearest
feasible even number, which requires being able to adjust every edge,
this T-join-based parity adjustment scheme can easily be extended
to handle fixed-flow edges with ;4 = D4 by excluding them from the
MST.
In addition to adjusting 6 for even 1, we also need to adjust Bi-

MDF bounds ; andD, such that each entry of6−; andD−6 is even.We
achieve this by incrementing entries of ; or decrementing entries of
D where necessary. This way, the feasible region is only shrunk and
never expanded. Where ;4 + 1 = D4 – common in our representation
of non-linear cost functions – this results in undesired fixed-flow
edges. Therefore we modify our cost function representation to only
produce bounds with even offset from 6. Section 3.6.3 discusses how
we minimize the impact this has on accuracy.

In what we coin theAsymmetric Double Cover, we later counteract
the adjustment of Bi-MDF bounds in either 4+ or 4− , raising the
lower or lowering the upper bound by one. By only re-adjusting
one copy, the sum of both lower (or upper) bounds is the original
un-adjusted bound, so any solution cannot violate the bounds of
the original problem. The choice of which copy to adjust affects the
feasible region, and it is unclear if there is any way to find a good
choice a priori. In our implementation, we simply deterministically
choose one of the two edges. In practice, this proved sufficient to
roughly halve the approximation error incurred compared to the
symmetric double cover (cf. Figure 16).

3.6.3 Cost function approximation. Previously, we translated non-
linear Bi-MDF per-edge cost functions to Bi-MCF linear objectives
using capacity-1 edges. For our double cover approach to work cor-
rectly, we need to model costs using capacity-2 edges. Effectively,
we can now only choose the values of our piecewise-linear approx-
imation 2̃4 for even integer deviations from 6̃ instead of choosing
them for every integer. Figure 8 shows the error incurred when

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 11

x

c(x)

ℓ
0−1−2 1 2 3 4 x

c(x)

ℓ
0−1−2 1 2 3 4

x

c(x)

ℓ
0−1−2 1 2 3 4 x

c(x)

ℓ
0−1−2 1 2 3 4

Fig. 8. Approximation (red) of per-arc objective functions 24 (G) (blue)
around 6 = 0 measuring the deviation from a target value ℓ using only
capacity-two edges: Exact 24 (G) values were chosen for the available sam-
ple points of an absolute (top row) and quadratic (bottom row) cost functions.
G = 0 matches the integer minimizer in the left column, but in the right
column, G = 1 would be the integer minimizer of 24 , but G = 0 becomes the
minimizer of our approximation.

choosing the exact 24 (G) values for all available sample points. The
error would be acceptable if we could always choose 64 as an integer
minimizer of 24 . However, in cases where our T-join-based rounding
had to adjust 6 from its preferred parity, the relative order of costs
can become inverted, and the integer minimizer of 2̃4 changes. In
our example, 2̃4 (1) < 2̃4 (0), although 24 (1) > 24 (0).
Instead of choosing 24 (G) to be exact at sample points, we can

distribute the error by computing more appropriate edge costs, e.g.,
minimizing some last-squared energy. With usual cost functions
only parameterized by one parameter (ℓ) and symmetry modulo 1, it
is feasible to pre-compute edge weights that can quickly be interpo-
lated by the solver, avoiding costly additional per-edge optimization
steps.

Nevertheless, even in the best case, if we had to adjust 6, the only
way to avoid the mentioned cost inversion is to utilize zero-cost arcs,
such that the two points will have identical cost – 2̃4 (1) = 2̃4 (0) in
our example.
We chose only to implement the first-mentioned weight assign-

ment method, as we do not rely heavily on the quality of the approx-
imation results and expect only marginal runtime improvements
from an improved 50 in our exact solver.

3.7 Exact Bi-MDF solutions by iterated refinement using
1-matching

While we have so far focused on approximate solutions for Bi-
MCF, such problems can also be solved exactly by a reduction to
capacitated Weighted Perfect 1-Matching (WPbM) [Edmonds and
Johnson 1970; Pulleyblank 2012, 1973].

A (capacitated) perfect 1-matching in an undirected graph (+ , �)
is an assignment G : � → N0, G8 ≤ D8 for edge capacities D : � → N
that fulfills degree constraints 1E =

∑
4 :43E G4 . Per-edge weights

l : � → R induce a matching cost 2 (G) = ∑
4 l4G4 that is subject

to maximization in the WPbM problem. 1-matching can be defined

c

b

a∂ 2

2

2

4
2

(a)

c

b

a∂ 1 −0.6 −1
1

0.4

−1

1

−0.2

−1

0

0
1

1

(b)

in nodes ci

bi

ai
∂i

−11

0.2

−0.4

1

−1

out nodes co

bo

ao
∂o

1

0.6

−1

−1−1

(c)

Fig. 9. (a) Initial flow 6 from double cover approximation (b) Bi-MCF with
maximal deviation* = 2 constructed using 6 results in zero-demand prob-
lem for exact refinement. Edges labeled with costs; Bold edges are D = 2,
others D = 1. (c) Resulting 1-Matching problem. Edges drawn bold have
capacityD = 2, othersD = 1. Green color indicates zero-weight edges; labels
show the weight of blue edges. Every node has a demand of 2.

with and without edge capacities, but either form easily reduces to
the other.
In this section, we follow an approach by Edmonds [Edmonds

1967; Lawler 1976] to reduce a Bi-MCF problem to a WPbM prob-
lem whose size is linear in the Bi-MCF problem and quadratic in a
parameter" ∈ N that corresponds to the maximum flow through a
node.
We make a number of simplifying assumptions on the Bi-MCF

problem that are fulfilled in our use case (an iterative refinement
scheme detailed in Section 3.9).
• All node demands are zero (true for feasible 6),
• Lower flow bounds ; are zero (by construction), and
• Upper flow bounds (capacities) D are finite.

It follows that 5 = 0 is a valid flow. We refer to the referenced
literature for more general constructions that allow for non-zero
node demands.
For clarity of exposition, we perform the reduction in two sep-

arate steps: First, we create a modified Bi-MCF instance, which
directly turns into a capacitated 1-matching problem with a slight
adjustment. Figure 9 illustrates its result. We replace each vertex E
with a pair of vertices E in and Eout. Each head (tail) of an edge at a
vertex E is changed to be incident to E in (Eout) instead:

f′ (E in, 4) := max {0, f (E, 4)} (24)

f′ (Eout, 4) := min {0, f (E, 4)} (25)

We then add a new edge 4E = Eout → E in with zero weight5. Its
capacityD (4E) is chosen as the minimum of" and the maximal sum
of capacities of edges that have either heads or tails at E . Let the flow
demand 1 (E in) = D (4E), and 1 (Eout) = −D (4E). This is equivalent to
the result of moving D (4E) units of flow from E in to Eout along 4E .
5Using multiple edges with non-zero weights could be used instead to assign costs to
node throughflow

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

12 • Martin Heistermann, Jethro Warnett, and David Bommes

The resulting problem is equivalent to the original Bi-MCF for
all flows that do not exceed the node throughflow limit" . Observe
that E in only has incident heads, and Eout only has incident tails.

Finally, we flip the sign of all Eout nodes by multiplying the corre-
sponding rows of the constraint matrix with −1. This results in an
equivalent problem, but all demands are now positive, and all edges
are of the head-head type.
The constraint matrix thus corresponds to an undirected graph,

while node demands correspond to 1-matching degree constraints.
The effect of this construction on the various edge types is depicted
graphically in Figure 4.

With 1-matching edge weights set to negated Bi-MCF edge costs,
we obtain the equivalent WPbM problem.

3.8 Reducing 1-Matching to Matching
Efficient 1-matching solvers have been described in the literature
[Anstee 1987; Müller-Hannemann and Schwartz 2000, 2001], how-
ever their implementation is intricate. We are not aware of any such
publicly available implementations. Therefore, we instead rely on a
reduction of WPbM to the well-knownWeighted Perfect Matching
(WPM) problem, for which multiple efficient solvers are publicly
available [Dezso et al. 2011; Kolmogorov 2009]. WPM can be con-
sidered the special case of WPbM where all entries of 1 (E) are 1.

If any 1 (E) > 1, we perform a simple reduction, adapted from the
work of Edmonds [Edmonds 1967; Lawler 1976].

v1

v2

v3

w1

w2

w3

w4For a WPbM problem (+ , �, l, 1,D), we
construct a WPM problem (+ ′, �′, l ′).
For each node E8 ∈ + , we add 1 (E8)
copies E1

8
. . . E1

8
to+ ′. For any edge 4EF ∈

� whose capacity can never be exceeded
(i.e., D (4EF) ≥ max{1 (E), 1 (F)}), we fully connect the correspond-
ing duplicates of E and F in a complete bipartite sub-graph and
assign the weight l (4) to each of these new edges.
Capacitated edges, for which this is not the case,

v1

v2

v3

w1

w2

w3

w4are represented in the WPM by D (4)
pairs of nodes (E4 ,F4), each connected
by a zero-weight edge, where each E4 is
connected to all E-nodes with the orig-
inal weight l (4), and each F4 is con-
nected to allF-nodes using a zero-weight edge.

For every matching in the WPM problem, there is a matching of
identical total weight for the WPbM problem, and vice versa.

3.9 Exact solution by iterative refinement
The reduction to WPbM requires upper limits " for the amount
of flow through each node. Tight bounds that do not exclude the
optimal solution are not easily found a priori, and conservatively
large bounds will result in large runtimes as the WPM problem size
grows quadratically with" .
We side-step this issue by using these reductions for iterative

refinement with small " values instead of trying to obtain the
optimal solution in a single step.
We start with an initial feasible flow 50, which we obtain using

the method detailed in Figure 3.6.3. Then we iteratively improve this
solution by using 5: as 6 for the reduction of Bi-MDF to Bi-MCF

(with * = "). Using our chain of reductions, we obtain 5:+1 as a
new feasible flow. We iterate until the cost of 5: has converged. Note
that the actual flow values may not converge, as – for instance –
zero-cost edges allow multiple optimal flows with identical costs.
Note that each but the last step results in a feasible flow that

strictly improves the objective, and we can stop the iteration early
to trade computation time against accuracy.

We still need to choose appropriate" values for each step: smaller
values will generally require more iterations, while larger values
increase the cost of each iteration. Our experiments suggest that
choosing a constant " = 2 gives a good runtime performance in
practice. In contrast, more complex" schedules, such as iterating
with" = 1 until convergence and only then switching to" = 2, did
not yield consistent runtime improvements for our inputs. Perhaps
unsurprisingly, using" > 2 usually performed much worse.
First, we want to prove the termination of the algorithm after a

finite number of steps.

Lemma 3.6. If the cost function of each edge in a Bi-MDF problem
has a minimal value, the number of distinct costs of flows that are
below 2 (50) is finite.

This does not imply that the number of distinct flows with a lower
cost is finite – for example, zero-cost circuits on unbounded edges
may be added arbitrarily many times to a flow.

Proof. Consider a pseudo-flow ? that takes on a flow value ?4
of minimal cost 24 (?4) on each edge. The cost of changing the flow
through an edge 4 , 2X4 (G) = 24 (G) − 24 (?4), is non-negative and
convex. A positive or negative adjustment of the amount of flow
through an edge is either zero-cost or the total adjustment in that
direction is bounded by some value<4 that would already bring
the per-edge cost 24 (G ±<4) above 2 (50) − 2 (?). In both cases, the
number of different cost values the edge can incur is finite.Therefore,
the number of values the sum of all per-edge costs can attain must
also be finite. �

Corollary 3.7. The algorithm converges after a finite number of
steps for any fixed" .

Theorem 3.8. If an iteration with " ≥ 2 does not improve the
objective function, the optimum has been attained.

Proof. Assume the algorithm has converged to a sub-optimal
5 , i.e., the optimal solution of the Bi-MCF sub-problem has a cost
of 0. Then there must be a negative-cost solution X =

��5 ★ − 5
�� that

leads to a flow 5 ★ of lower cost with a throughflow greater than
" on at least one node. This solution corresponds to a circulation
on the Bi-MCF. However, any circulation that contains a node with
a throughflow greater than 2 is not a circuit of the network and is
conformally decomposable into a sum of circuits X8 , each of which is
a feasible solution for the sub-problem. From l) (∑8 X8) = l) X < 0,
it follows that at least one of the X8 is a negative cost solution. Proof
by contradiction. �

Corollary 3.9. The refinement algorithm finds an optimal solu-
tion for any Bi-MDF problem in which each edge cost function has a
minimal value.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 13

3.10 Bi-MDF simplification
In addition to splitting Bi-MDF networks into their connected com-
ponents to solve them separately, we perform another pass of simpli-
fication that is cheap to compute and greatly reduces network size
and runtime for many real-world Bi-MDF instances we encounter.
We denote a sequence of nodes =1, . . . , =: ∈ # a chain if there

exists exactly one edge between =8 and =8+1 of arbitrary bi-direction
for all 1 ≤ 8 < : , and every non-terminal node =2, . . . , =:−1 has
a demand of zero and exactly one head and one tail edge. Every
edge in a chain has to carry the same amount of flow due to flow
conservation (Eqn. 15). Additionally, upper and lower bounds for
any edge in the chain apply to the whole chain. We collapse such
chains into a single edge with appropriate upper and lower bounds
and a cost function that is the sum of the individual edge cost
functions. This construction could be extended to chains where
nodes have non-zero demand; however, this is unnecessary in our
case, as demands are always zero.
Lyon et al. perform a similar construction directly on T-meshes

by only introducing a single ILP variable for dual edge chains [Lyon
et al. 2021a]. Our approach achieves the same result but can be au-
tomatically applied to arbitrary Bi-MDF instances from any source.

4 MODELING QUANTIZATION AS BI-MDF PROBLEM

4.1 Preliminaries
4.1.1 T-Mesh Inputs. We consider manifold T-Mesh inputs, which
we formalize as sets of verticesV , undirected arcs A, directed half-
arcsH , and patches P. Figure 2 illustrates the utilized nomenclature.
An arc 023 ∈ A is represented by a set of two distinct vertices

2, 3 ∈ C: 023 = 032 = {2, 3}. For each arc 023 , there is a pair of
opposing half-arcs ℎ23 = 2 → 3 , ℎ32 = 3 → 2 . For G → ~, G is
considered the tail, and ~ is the head of the half-arc.

Each half-arc is either a boundary half-arc with no incident patch
(in which case its opposite half-arc must not be a boundary) or is
incident to exactly one patch. ? (0) denotes the incident patch, or m
in case of a boundary.

A path is a sequence of two or more distinct vertices 280281 · · · 28= ,
where for each pair of successive vertices 280280+1 , a half-arc 280 →
280+1 exists in H . We denote the first vertex in a path as its tail
and its last vertex as its head. We identify such sequences of ver-
tices with their associated half-arc sequences (280 → 281) (281 →
282) · · · (28=−1 → 28=).

Finally, a patch ? ∈ P is a tuple of paths (?0, . . . , ?=−1) making up
its sides, such that the head of ?: is the tail of ?:+1 mod = (denoted as
corners of the patch), and the paths are otherwise vertex-distinct. We
consider the number of sides (or, equivalently, corners) the valence
of the patch. For quadrangular patches (valence = = 4), we consider
the pairs of ?: and ?:+2 mod 4 opposite sides.

4.1.2 T-Mesh Quantization. We call an assignment G : A → N0
of non-negative integer lengths (subdivision numbers) to arcs of
a T-mesh a quantization. We consider such a quantization valid if
each T-mesh patch can be tessellated as a pure quadrangular mesh
conforming to the edge subdivision numbers. This is equivalent
to requiring the sum of side subdivisions of each patch to be even
[Takayama et al. 2014; Tarini 2022].

With such hard constraints, we can guarantee the existence of a
conforming quadrangulation. However, we still require a suitable
objective function to obtain a high-quality quad mesh that follows
user preferences such as mesh resolution.
Despite its attractiveness, it appears intractable to optimize for

quad mesh quality metrics directly. Minimizing deviation of subdi-
vision numbers from real-valued target lengths computed on the
T-mesh commonly serves as a proxy objective for geometric quality.

Additional soft constraints can encourage certain patch tessel-
lations that lead to simpler topological structure, e.g., preferring
subdivision numbers that do not require excessive amounts of ir-
regular vertices, or that lead to aligned singularity pairs, i.e., short
separatrices connecting irregular vertices [Pietroni et al. 2021].

Admitting zero-length quantizations for edges is a powerful strat-
egy that can significantly reduce the topological complexity of the
resulting quad layout. However, this requires additional separation
constraints to prevent collapsing singularities, feature entities, and
boundaries in the parametric domain.

In their simplest form, they constitute lower bounds G (08) ≥ 1 for
some T-mesh arcs. This approach, however, often is too restrictive,
and various kinds of non-convex min-one-path constraints are pre-
ferred [Campen et al. 2015; Lyon et al. 2021a,b]. Campen et al.’s QGP
algorithm forbids paths between singularities (and, by extension,
features and boundaries) where a signed sum of quantized offsets
of either parametric direction is zero. This formulation captures
the non-collapse condition precisely; however, the set of such paths
grows very quickly with T-mesh size, therefore lazily checking them
is expedient. The authors implement such a lazy approach by per-
forming breadth-first graph searches during optimization to check
if an iteration would violate the constraint.
In contrast, Lyon et al. compute a small setM1 of straight min-

one-paths a priori. At least one arc in each min-one-path must be
quantized to a strictly positive value. These constraints are sufficient
to guarantee separation but not necessary. However, in addition to
preventing the aforementioned collapses, the authors’ construction
guarantees adherence to a given angular deviation threshold U be-
tween resulting mesh edge directions and directions implied by the
parameterization.
We adopt their approach in our modeling strategy to quantize

quadrangular T-meshes. It is more compatible with our Bi-MDF-
based problem modeling, and allows us to directly employ our quan-
tization implementation to implement the method of Lyon et al.
without requiring an ILP solver.

For our method of quantizing polygonal T-meshes, we extend
the implementation of [Pietroni et al. 2021], which does not allow
for zero-quantized arcs; therefore, no such explicit separation con-
straints are necessary.

4.2 Quadrangular T-meshes
The first real-world application we cover is the quantization of T-
meshes consisting entirely of quadrangular patches (i.e., with four
corners) under strict consistency constraints, i.e., pairs of opposite
sides must be quantized to the same lengths. We will allow quantiz-
ing arcs to zero length while adhering to non-zero path constraints
M1, as discussed in Section 4.1.2. We individually map each T-mesh

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

14 • Martin Heistermann, Jethro Warnett, and David Bommes

(a) The simple patch template en-
forces quantization equality of op-
posite sides.

(b) Split nodes enable measuring to-
tal throughflow, corresponding to
quantized patch side length.

(c) Additional arcs (red) allow non-
regular quantizations. Self-loops
could be used to allow even more
solutions.

(d) The minimal template only en-
forces the hard constraint of an even-
sum boundary quantization, but of-
fers very little control.

Fig. 10. A selection of bi-flow network templates for quadrangular patches.
Starting with (b), edge orientations are chosen such that patches only receive
inflow from their neighbors. This simplifies network assembly.

patch ? ∈ P to a Bi-MDF sub-problem, with a mapping of each patch
side to a node in the Bi-MDF network, considered its respective side
node. Subsequently, we assemble the per-patch sub-problems by
connecting the networks of neighboring patches.

4.2.1 Per-patch construction. The simplest case, equivalent to the
formulation discussed in Section 1 and illustrated in Figure 10a,
only consists of two nodes, each corresponding to a pair of opposite
sides. Each node is the side node of two patch sides. With this basic
construction, our network arcs always correspond to the quantized
lengths of a single T-mesh arc, and we have no way of utilizing the
total quantized length of a patch side in the objective function. This
total side length corresponds to the node throughflow.
If, instead, we use one node per side and connect the opposite

sides’ nodes (Figure 10b), the flow through this inner edge corre-
sponds precisely to the quantized length of the whole side. This is
our preferred template, as it allows using that length both in the ob-
jective function and for min-one constraints. The edge orientations
are chosen so that each side node receives inflow only, simplifying
later patch assembly.

4.2.2 Patch network assembly. We will add a network edge 40 for
each arc 0 ∈ A. For each of its half-arcs ℎ with an incident patch ? ,
this edge is incident to the side node = of the side ?8 that contains ℎ.
If we use the simple template, 40 has a head or tail at = depending on
a predetermined orientation of ? . For any other discussed template,
it will always have a head, i.e., f (=, 40) = 1. This construction results
in outer-edges for boundary arcs that we later eliminate, as discussed

in Section 3.2.1. Figure 6 illustrates this construction using the simple
template.

4.2.3 Non-zero path constraints. The first variant of handling such
constraints we will consider is to replace the non-zero path con-
straintsM1 withmin-1 constraints for a set of network edges chosen
heuristically such that their satisfaction implies non-zero path con-
straint fulfillment. A simple heuristic would be to pick one T-mesh
arc per non-zero path and set its corresponding network edge’s
lower bound to one. However, this is not always necessary: Strict
consistency constraints ensure that a min-one constraint on one arc
or patch side implies min-one quantization of every opposite patch
side and everyM1 that fully contains such a patch side. Thus it is
usually possible to construct a non-zero constraint set �1 smaller
than |M1 |, consisting of only arcs and sides.

We explicitly capture this relationship by constructing a directed
Non-zero implication graph �1 = (#1, �1). The node set #1 is the
disjoint union of non-zero pathsM1, T-Mesh arcs A and sides S.
An edge E → F denotes that non-zero quantization of E implies a
non-zero quantization ofF . We add E → F to �1 in the following
cases:

• an arc or side E is fully contained in a side or pathF ,
• a path E is a subset of a pathF , or
• a side E is opposite a sideF in a T-mesh patch.

Algorithm 2 then greedily computes a sufficient set of min-one
constraints by adding sides that cover new paths fromM1 until
every path is covered. Deleting visited parts of the graph ensures
linear runtime.

This procedure shrinks our feasible region but allows for efficient
optimization and a simple Bi-MDF construction. We cover a more
advanced approach in Section 4.3 that naturally models non-zero
path constraints exactly.
Another (unexplored) option would be to iteratively solve and

lazily add min-one constraints to counteract violated separation
constraints until we reach a feasible solution.

4.2.4 Relaxed conservation constraints. Not every quadrangular T-
mesh admits a valid quantization under hard quad patch regularity
constraints [Myles and Zorin 2013]. In other cases, allowing some
irregular quantized quad patches may improve objectives. If our
downstream pipeline is capable of tessellating non-regular quantized
quad patches, we can adjust our flow network construction to allow
such solutions, choosing edge costs to balance objectives.
Figure 10c illustrates one modeling option, with additional arcs

(marked in red) extending the feasible quantizations by allowing
flows to not only pass straight through a patch but also connect
arbitrary distinct patch sides. This variant does not yet allow all
possible tessellatable (even-sum) quantizations, as a flow cannot use
only one side of a patch twice. This could be facilitated by adding
self-loops at the interior nodes or, for a very simple network at the
cost of little control, by only using a single interior node (Figure 10d).

We would have to be careful when combining such relaxed quan-
tization constraints with zero-length quantizations: Quad patches
with opposite zero-quantized sides can always be collapsed, but
irregular patches with some zero edges may lead to degenerate

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 15

configurations. One option to solve this is lazily adding additional
constraints when such situations occur.

4.3 Half-arc quantization
In this section, we only consider the case of purely quadrangular
T-meshes, i.e., every patch contains exactly four corners. The idea
could, however, easily be extended to polygonal meshes.

A strictly positive arc quantization completely fixes the order of
two T-junctions on either side of a T-mesh arc path. The introduc-
tion of zero-length arcs relaxes this and enables merging subsequent
T-junctions, however, not reversing their order. This is sensible as
long as we only consider T-junctions on the same side of the path,
where a changed order would imply unwanted inverted elements.
The same is not true when we merely change the order of two T-
junctions on opposite sides of the path – in this case, the additional
degrees of freedom may allow superior solutions. Figure 11 shows
an example where the desired alignment is only possible due to
this relaxation. This example is inspired by Brückler et al., who
implement a similar relaxation in the three-dimensional case by
allowing negative quantized lengths [Brückler et al. 2022a]. While
sub-sides may have negative lengths, total side lengths must still be
non-negative to prevent inversion. We present an alternative imple-
mentation: Instead of using negative lengths of sub-sides shared by
patches on either side of the path, we quantize either side of an arc
– its two half-arcs – independently, only constrained by an equal
quantized sum on each side of the path.

If every T-mesh corner is a T-junction, the approaches are equiva-
lent and respective quantizations can easily be translated. However,
crossings necessarily form fixtures at which opposite arcs cannot
be moved relative to each other, even when admitting negative so-
lutions. Splitting a crossing into a pair of T-junctions enables the
relaxation for one of the two opposite pairs, making the feasible
region of both approaches equivalent again.
This is especially beneficial in conjunction with min-one-path

constraints M1, which we can now model by virtually splitting
the T-mesh along each such constraint path by introducing a two-
gon patch (Figure 12a). We can then directly apply the min-one
constraint to a network edge whose throughflow corresponds to the
quantized length of the entire path. This approach also works when
such min-one paths have partial overlaps, which can occur when
using Lyon’s formulations [Lyon et al. 2021a,b]. Figure 11 shows
such a configuration. Therefore, half-arc quantization allows us to
model such separation constraints exactly in Bi-MDF formulations
without a heuristic to turn them into per-arc or per-side min-one
constraints.
A half-arc quantization is a function � : H → N0 assigning

lengths to T-mesh half-arcs, together with a collection of simple,
straight, directed half-arc paths�? ⊆ ∪8∈NH 8 . We consider� valid,
if

(1) Opposite half-arcs that are both not part of any path in �?

are assigned the same length,
(2) For each patch, quantizations of opposite sides’ half-arcs sum

up to the same length, and
(3) For each path in �? , the sums of quantized length on either

side are equal

If we are more concerned with control over proximity to the
original T-mesh than modeling separation constraints exactly, an al-
ternative construction illustrated in Figure 12b enables fine-grained
cost control over T-junction reordering. In this modified approach,
we can assign costs to limit how far a half-arc quantization may
be from an arc quantization. This does come at the cost of losing
exactness in min-one path constraint modeling, as it forces us again
to pick a sufficient set of min-one constraints, thus excluding some
valid solutions. This may still be a good compromise in applications
where fine quad meshes – and thus fewer quantizations to zero
length – are desired.

After successful half-arc quantization, we adapt the T-mesh topol-
ogy and update its embedding to obtain an arc quantization with
non-negative quantized lengths. We describe our method for T-mesh
adaptation and re-embedding in Appendix A.
Existing unmodified algorithms (e.g., [Campen et al. 2015; Lyon

et al. 2021a]) can then process this adapted and re-embedded T-
mesh to collapse zero-length arcs and obtain a valid quad layout. An
integrated approach that directly operates on half-arc quantizations
without intermediate conversion to an arc-quantized T-mesh may
be beneficial for performance reasons. However, we did not explore
that option due to additional implementation complexity.

4.4 Polygonal T-meshes
We will now discuss using Bi-MDF to model the quantization of
non-quadrangular T-meshes as they appear in the quad-meshing
pipeline of Pietroni et al. [Pietroni et al. 2021].

Their approach produces a T-mesh consisting of patches (“charts”)
with valences between three and six. The associated quantization
problem is to find an assignment of strictly positive integers lengths
to T-mesh arcs (“sub-sides”), such that the sum of quantized lengths
for each patch is even to allow local tessellation. In addition to this
minimalistic hard constraint, soft constraints guide the quantization
toward goals chosen to obtain high-quality results:

• Isometry: Deviations from target lengths should be minimal;
• Regularity:Quadrangular patches should have a regular quan-
tization; other valence-= patches shall only contain one ir-
regular valence = vertex, preferably strictly inside the patch;
and
• Singularity alignment :The singular vertices of the quadmeshes
of nearby non-quad patches should be aligned, i.e., connected
by a straight edge chain.

While isometry is straightforward and regularity can be encouraged
by simple linear soft constraints, singularity alignment is more
complicated. The authors search for pairs of non-quad patches that
are either directly adjacent with a mutual side consisting of only a
single T-mesh arc or connected through a chain of quadrangular
patches, with each adjacent pair again sharing a common side (cf.
[Pietroni et al. 2021], Figure 17). Under the assumption of regular
quantization of all involved patches, the integer parametric position
of the irregular vertices along the corresponding sides of the non-
quad patches is linear in the assigned side lengths, leading to a
single linear soft constraint per aligned pair.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

16 • Martin Heistermann, Jethro Warnett, and David Bommes

.8

.2 .8

.1 .1 .8

.9

.9

.1
.1

(a) T-mesh, arcs labeled with tar-
get lengths ℓ . In a non-negative arc
quantization, a min-one constraint
(red arc) prevents the desired patch
collapse

2

0 2

1 -1 2

1

1

1
1

(b) Integer length arc quantization:
a negative quantized arc signifies a
change in the order of T-junctions

2

0
2
2

0
1

0
0

2
1

1
1

1

1
1 1

(c) Half-arc quantization. Some
half-arc quantization values omit-
ted where they are equal for both
half-arcs of an arc.

2

0
2
2

1
1

1

1
1 1

0
0

1
1

1
1

(d) T-mesh adaptation moves the
brown arc along the green path to
obtain a non-negative arc quanti-
zation

Fig. 11. Half-arc quantization or negative lengths both enable quantizations that flip the order of T-junctions on opposite sides of a path, allowing the collapse
of the undesired patch highlighted in (a) while respecting a min-one constraint.

(a) A pair of nodes allows using the
quantized length (flow through red
arc) of the path in objective and con-
straints.

(b) Cost functions on red arcs enable
fine-grained costs for T-junction re-
ordering

Fig. 12. Options for modeling half-arc quantization by inflating a path into
a virtual two-gon. By construction, both sides of the trace will be quantized
to the same lengths, as required for later deflation. Example taken from the
central part of Figure 11.

Violated soft constraints may negatively influence the solution:
while their associated cost penalties did not suffice to ensure con-
straint satisfaction, their influence skews the result. This is an issue,
particularly for the alignment constraints, where only exact satisfac-
tion is advantageous, and any degree of violation can be considered
equally undesired. We mirror the authors’ approach of performing
a second round of optimization in which we drop unfulfilled align-
ment constraints. We perform the same search for singular pairs
as implemented by Pietroni et al. and mark all involved T-mesh
sides (i.e., those sides whose dual forms a chain between paired
patches) and their constituent arcs as paired for different treatments
in per-patch and global network construction.

While each unpaired arc is still be represented by one dual edge
as before, we now associate paired arcs with two parallel dual edges.
Their sum determines the quantized arc length, but their individual
values (which we can view as the length of virtual sub-arcs) indi-
cate the parametric position of the path connecting the involved

irregular vertices. This representation obviates the linear expres-
sions determining the singular vertex position and can be seen as a
re-parameterization of variables: Instead of inferring the parametric
position of singular vertices from side length variables, we repre-
sent these positions along arcs explicitly and obtain side lengths as
simple sum of quantized virtual sub-arcs.

4.4.1 Per-patch construction. Patches with paired and unpaired
sides require different templates: Each unpaired side should have a
single side node, but for a paired side, we require two side nodes,
one for each virtual sub-arc. We will define all per-patch templates
to have two side nodes per side, which we collapse into a single
side node for each non-paired side. This approach solely serves the
clarity of exposition; in our implementation, we perform a direct
construction without explicit collapses.
To derive suitable templates, consider the tessellation of a non-

quad patch that fulfills the regularity condition and has its irregular
vertex strictly inside the patch. It must be a regular subdivision of
the quad tessellation obtained by connecting a point on each side
with a central irregular vertex. This leads to the basic per-patch
Bi-MDF templates illustrated in Figure 13 (only blue and green arcs).
Every entering flow unit cancels out with a unit from another side,
ensuring even length sums. Note that the amount of flow into either
node of a side directly corresponds to the parametric position of
the irregular vertex along the side. The resulting feasible set of
quantizations directly corresponds to the conditions posed by Tarini
[Tarini 2022], where flow amounts correspond to B8 variables in his
formulation.

An additional per-patch emergency node can receive an even sum
of flow from its patch node via additional emergency edges, which
it sinks via a tail-tail loop. Every flow unit through this loop sinks
two flow units, maintaining even total parity.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 17

Fig. 13. Templates for polygonal patches of valence 3 to 6 with paired sides.
Outer-edges (blue, dashed) connect to other patches or the boundary. An
emergency node (pink) allows for non-regular quantizations by sinking even
amounts of flow using a tail-tail self-loop (omitted here to reduce clutter)
from emergency arcs (red) that have a target of zero, are unbounded, and
carry a high weight.

Fig. 14. Singularity alignment for paired patches: Side node pairs for all but
the paired patch sides have been collapsed. Interior emergency nodes and
arcs were omitted for clarity.

This construction enables non-regular quantizations that still
result in an even boundary sum and offers flexibility in penalizing
deviation from regular quantization.

Penalizing singularities on patch boundaries. Such quantizations
are often undesired, as the singular vertices of neighboring patches
may merge into one singularity with higher or lower valence than
desired. This configuration incurs a penalty in the original IQP
formulation, which we can also model in our approach. In a regular
quantized non-quad patch, the singularity is located on the patch
boundary exactly if the flow on any interior non-emergency edges
(green) is zero. Therefore we assign a cost function with a positive
cost for a flow of zero and zero cost for any positive flow.

4.4.2 Patch network assembly. We can assemble the complete Bi-
MDF network from individual per-patch networks independently

per T-mesh arc0 ∈ A. In the case of a non-paired arc, we connect the
corresponding side nodes of the incident patches with a bi-directed
head-head edge whose target length ℓ is the length of 0. Boundary
arcs are handled identically to the previous quadrangular T-mesh
case. If the arc is paired, the incident sides of patches ? and @ each
have two side nodes, ?0,1 and @0,1, respectively. Directly connecting
the corresponding nodes would enforce singularity alignment as
a hard constraint. Therefore, we add two additional helper nodes
ℎ0,1, connected by a pair of antisymmetric directed edges that allow
penalized non-alignment. Connecting ?8 ←→ ℎ8 and ℎ8 → @1−8
completes assembly (Figure 14).

Target lengths for paired sides. TheQuadWild formulation handles
target lengths of paired sides identically to non-paired sides. In
our construction, we cannot use the sum of our virtual sub-arc
quantizations in the objective function but must define targets for
each. To this end, we compute the optimal real-valued parametric
position of the singular vertex from the target edge lengths:

a1 a2

b1

b2c1

c2

Given the regular subdivision of a triangle
into three quadrilaterals, assume the lengths
for 1 and 2 to be fixed to their real-valued tar-
get length. Then with 11 = 22, 01 = 12 and
02 = 21 and some basic algebra, we obtain
01 = 1

2 (1 − 2 + 0) and 02 = 1
2 (2 − 1 + 0). Thus we obtain suitable

target lengths for either subside. It would also be possible to ad-
just the distribution of target length among the virtual sub-arcs
away from this initial split in iterative re-solves based on the actual
quantization result; however, we did not investigate this heuristic
further.

5 EVALUATION

5.1 Implementation notes
We release an open-source C++ library, libSatsumawhich imple-
ments representations, reductions, and solvers for the graph prob-
lems discussed in this work. We intentionally separated this im-
plementation from the quantization applications to allow use as a
black-box solver for Bi-MDF or 1-Matching problems arising from
any application. Its modular structure should make it attractive for
further research into any of the involved sub-problems, and we will
be happy to accept improvements.

LibSatsuma utilizes the LEMON library [Dezso et al. 2011] for its
implementation of directed and undirected graph data structures,
solvers for the WPM and MCF problems, as well as various basic
graph algorithms.

Additionally, we provide an interface to the Blossom-V solver for
WPM [Kolmogorov 2009], which in our tests (cf. Figure 16) proved
faster than the corresponding implementation in LEMON, but is not
available under a free license.

5.2 Benchmark setup
We ran our tests on a server with two 64-core AMD EPYC 7742
CPUs and 2TiB of RAM, running Linux 5.10 and Gurobi 10.0.1. All
timings are reported as user CPU time obtained using getrusage().
We ran our methods on the quadwild-300 dataset published to-

gether withQuadWild [Pietroni et al. 2021].

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://www.algohex.eu/publications/bimdf-quantization

18 • Martin Heistermann, Jethro Warnett, and David Bommes

(a) ILP (reference)
#��� = 2186;C@ = 30.2 s

(b) Bi-MDF
#��� = 3784;C@ = 2.0 s

(c) Bi-MDF / Half-arc
#��� = 1713;C@ = 2.1 s

(d) ILP (reference)
#��� = 233;C@ = 172ms

(e) Bi-MDF
#��� = 436;C@ = 40ms

(f) Bi-MDF / Half-arc
#��� = 184;C@ = 165ms

Fig. 15. Quad layouts via angle thresholded quantization on Knot100K (U =

45◦) and Bunny (U = 20◦). Models courtesy Aim@Shape & Stanford Com-
puter Graphics Laboratory.

5.3 Quadrangular T-mesh quantization
We added quantization methods based on the modeling approaches
discussed in Section 4.2 and Section 4.3 to libIGM, a currently non-
public quad-meshing library. Our implementation supports both
target-length-based quantization in the QGP pipeline [Campen et al.
2015], as well as the method introduced in [Lyon et al. 2021a] for
coarse quad layouts with bounded angle deviation (ATQ). In both
cases, we implement heuristic per-side constraints as described in
Section 4.2.3 (denoted as greedy), as well as our half-arc quantization
with T-mesh adaptation and re-embedding. We only use the per-
patch template shown in Figure 10b.
We demonstrate results for coarse quad layout generation in

Figure 15 and Table 1. While our results using greedy constraints
are usually not as good as ATQ’s results, our half-arc formulation
almost always creates layouts consisting of fewer patches than
ATQ. It does not have the same guarantees on angular deviation.
However, in practice, we find its results geometrically satisfying. For
the simple meshes that comprise a large part of the 300 dataset, ATQ
shows fast to acceptable runtimes despite its exponential worst-case
behavior; however, our method is still notably faster for worst-case
meshes.

5.4 Polygonal T-mesh quantization
We extend6 QuadWild, the open-source reference implementation
of [Pietroni et al. 2021], to optionally use our Bi-MDF-based quanti-
zation method as described in Section 4.4 instead of creating IQP
problems and solving them with Gurobi.

6implementation available at https://www.algohex.eu/publications/bimdf-quantization.

We match their objective function exactly with alignment con-
straints disabled and thus always obtain optimality even when the
original implementation does not. With alignment constraints en-
abled, our objective differs slightly, and we cannot always achieve
optimality w.r.t. the original objective, although the final meshes
results are of comparable quality. Our implementation supports the
same trade-off parameter U between isometry and regularity/align-
ment as the original implementation. We use U = 0.005 in our
experiments, which yielded higher-quality layouts than the default
values of 0.01 and 0.02 and better demonstrates the effect of the
different alignment terms. Note that while we find the presented
per-patch templates to produce high-quality results, for purposes
of a fair comparison, our code uses a slightly modified variant with
carefully chosen weights to match the QuadWild objective. For
details, we refer to our published source code.
QuadWild uses Gurobi to solve IQP problems, with two tech-

niques to accelerate this process: It partitions large T-meshes into
smaller clusters of patches and quantizes each cluster individually
instead of computing a global optimum. Additionally, for a list of
configurable pairs {(C8 , X8)}8 of runtime and duality gap thresholds,
it aborts optimization early if, for one of the entries, the runtime is
surpassed and the duality gap is under the threshold. A per-cluster
runtime limit defaulting to 200s is in place as well. These heuristics
greatly aid in typical situations where an optimal or near-optimal
solution is already found but has yet to be proven optimal. However,
either technique can prevent finding a globally optimal solution,
and it is notoriously challenging to select thresholds appropriate
for a wide input variety.

5.4.1 Runtime and energies without alignment constraints. For this
test, we disabled alignment constraints, so no re-solve is necessary,
and we can directly compare energies with our implementation. We
compare runtimes and achieved energies of QuadWild, both single-
threaded in its default configuration, as well as without partitioning,
early-abort heuristic disabled and using eight threads and a soft
memory limit of 64GiB (“full solve”) on the 300 dataset. The results
depicted in Figure 16 demonstrate that mesh partitioning and early
abort heuristics work well for most meshes of this dataset and
significantly reduce runtime compared to a full solve. However, for
a small number of meshes, the approximation error exceeds 100%.
Our Bi-MDF-based methods still prove to be dramatically faster
while simultaneously computing the global optimum, thus even
surpassing the full IQP solve in terms of energies achieved. 95%
of quantizations finish after 0.02s (Bi-MDF approximation), 0.14s
(Bi-MDF solve), 35.02s (IQP with early abort), and 88 hours (full IQP
solve) CPU time, respectively.

5.4.2 Results with alignment constraints. Our approach of splitting
each involved arc into two virtual sub-arcs (Section 4.4) allows mea-
suring and optimizing for alignment. However, instead of optimizing
for the total length of involved sides, we create target lengths for the
virtual sub-arcs. A priori, it is unclear which isometry objective is
favorable, and the two-step solving method employed in QuadWild
complicates comparisons. Depending on the results of a first solve, it
drops some soft alignment constraints, making comparing the final
achieved energies futile. Therefore, we resort to comparing quali-
ties of the final mesh for which the optimization energies are only

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://www.algohex.eu/publications/bimdf-quantization

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 19

10 3 10 2 10 1 100 101 102 103 104 105 106

CPU time [s]

0

100

200

300

Nu
m

be
r o

f r
es

ul
ts

 w
ith

 lo
we

r r
un

tim
e

0.47 s 2.93 s 11.20 s 98.35 s 568766.23 s

Bi-MDF, approx.
Bi-MDF, exact, Blossom-V
Bi-MDF, exact, LEMON
IQP, default settings
IQP, full solve

1 2 3 4 5 6 7 8 9 10
Energy relative to optimal solution

0

100

200

300

Nu
m

be
r o

f r
es

ul
ts

 w
ith

 lo
we

r e
ne

rg
y

1.02 2.37 4.85 4.85 10.50

IQP, full solve
IQP, default settings
Bi-MDF, asymm. DC, T-Join rounding
Bi-MDF, symm. DC, T-Join rounding
Bi-MDF, asymm. DC, round to even

Fig. 16. Cumulative plots of achieved runtimes and energies for polygonal
T-mesh quantization problems without alignment constraints on the 300
dataset. The full IQP solve reached its memory limit of 64GiB in 131 out of
301 cases.

proxies: element quality and topological complexity. We measure
element validity and quality using the minimum scaled Jacobians
(Figure 17). We observe comparable results between the different
solving methods and slightly worse quality when alignment con-
straints are used.

To assess topological complexity, we compute base complexmeshes
and analyze the number of faces relative to the quad mesh. While
this number usually would not be very meaningful – as it depends
on input mesh complexity and element scale – we can compare
it between different solvers that result in similarly sized meshes.
The results (Figure 17, lower plot) again show comparable results
between the IQP and Bi-MDF formulations.

Note that we discovered and fixed a bug in the QuadWild imple-
mentation for finding alignment pairs. All results use a version7
which incorporates our bug fix.

5.5 Bi-MDF solver variants and parameters
We discussed several variants for solving Bi-MDF problems approx-
imately. Our default configuration uses T-join-based rounding and

7https://github.com/nicopietroni/quadwild/pull/11

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mesh complexity: # of base complex faces / total faces

0

100

200

300

Nu
m

be
r o

f r
es

ul
ts

 w
ith

 lo
we

r c
om

pl
ex

ity +align, Bi-MDF
+align, IQP

align, Bi-MDF
align, IQP

1.0 0.5 0.0 0.5 1.0
Minimum Scaled Jacobian (MSJ)

0

100

200

300

Nu
m

be
r o

f r
es

ul
ts

 w
ith

 sm
al

le
r M

SJ +align, Bi-MDF
+align, IQP

align, Bi-MDF
align, IQP

Fig. 17. Cumulative distribution of mesh complexity and minimum element
quality on the 300 dataset when solving QuadWild problems with and
without alignment term using our Bi-MDF formulation and QuadWild’s
IQP with default settings.

(a) Without alignment (b) IQP +align (c) Bi-MDF +align

Fig. 18. QuadWild’s alignment constraints successfully produce a coarser
base complex structure on ujoint. Note that with the given alignment weight,
in the first solver round, the IQP solver actually finds an optimum for its
objective function in which 4/12 alignment constraints are not fulfilled
and therefore dropped. The different formulation of alignment terms for
paired sides in the Bi-MDF solver objective function changes has a different
optimum in which all alignment terms are fulfilled at the expense of a higher
isometry term. Therefore this example should not imply superiority of the
Bi-MDF formulation. Depending on the alignment weight parameter, either
solver can produce a spectrum of results.

our asymmetric double cover (DC). Comparing its performance to
using the simple rounding scheme or symmetric DC, runtimes are
nearly identical identical runtimes, however the asymmetric DC
results in a greatly reduced approximation error (Figure 16). Using
the simple round-to-even scheme does not significantly hurt result
quality in most cases, but there are outliers with up to 950% error.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://github.com/nicopietroni/quadwild/pull/11

20 • Martin Heistermann, Jethro Warnett, and David Bommes

Our reduction of Bi-MDF to Bi-MCF (Section 3.5) depends on a
parameter* ∈ N, which determines the range in which it can faith-
fully approximate non-linearities in the objective function. In the
refinement algorithm, we use * = " so that the cost function is ex-
act in the entire feasible region. However, in the initial double cover
approximation, we must choose a finite* despite the unbounded
feasible region. This choice influences both the resources required
to obtain the approximation and its quality. When using approxi-
mation results without refinement, we suggest evaluating the effect
of * in the specific application. However, we focus on using the
approximations as starting point for the refinement algorithm that
obtains an optimal solution independent of approximation quality;
in this case, * may only influence total runtime but not quality.
We used a fixed * = 5 for the initial approximations in all our
experiments without further experiments.

6 LIMITATIONS AND FUTURE WORK
There are extensive avenues for further research on the discussed
topics.
First of all, while Bi-MDF solving performance is already satis-

factory for our applications, there are numerous ways in which the
runtime of our algorithms could be improved further.

Algorithmic Improvements. The individual WPM instances in the
refinement process are highly related, so utilizing warm-start capa-
bilities in the WPM solver may prove beneficial.
Our implementation of the refinement operation performs the

various involved problem reductions sequentially and in isolation for
simplicity of implementation. However, a more direct construction
of the finalWPMproblemwould enable further optimization options
to produce smaller output problems. In our tests, the time spent
computing the reductions and translating their solutions back is
negligible compared to the WPM solving cost. However, this may
not hold for problems in other domains, where a faster reduction
process may make a more considerable difference.
The Bi-MDF instances from our applications also possess addi-

tional structure that we have not exploited yet: The problem graphs
can have an embedding in the input T-mesh, a topological manifold
surface of often low genus relative to their size. Results in solving
weighted matching in planar graphs more efficiently based on the
planar separator theorem [Lipton and Tarjan 1980] might extend to
a generalized version of the planar separator theorem that considers
graph genus [Gilbert et al. 1984].

Novel applications for Optimization based on Bi-directed Flow.
With our publication of libsatsuma as a generic Bi-MDF solver,
it appears very attractive to apply it to other kinds of problems that
fit into the modeling framework, but thus far, have been solved with
more generalized solvers at the cost of higher runtime and worse
runtime predictability. Topics in quad mesh research in which we
identify the potential for applying Bi-MDF modeling include quad
mesh refinement [Lyon et al. 2020] and coarsening [Couplet et al.
2021]. Even if Bi-MDF is not a perfect fit for a problem, some exist-
ing iterative or branch-and-cut solvers could likely be sped up by
simply using an initial solution obtained from a Bi-MDF relaxation.
In particular, this applies to QGP and further variants of T-mesh

quantization problems (e.g., [Lyon et al. 2021b]). We also see our
results as a chance to re-visit the multitude of applications that rely
on solving more specialized problems – e.g., minimum-cost flow on
directed graphs – and evaluate how modeling using the generalized
problems might extend their capabilities.

Generalizations. Finally, the question arises of how far Bi-MDF
can be generalized while preserving fast solvability. Exploring the
entire class of binet matrices – strictly larger than the incidence
matrices of bi-directed graphs we have considered here [Appa and
Kotnyek 2000; Kotnyek 2002] may be a good starting point. Other
avenues may be generalized networks where edges carry gain mul-
tipliers [Hochbaum 2004] or flow equality constraints [Ahuja et al.
1999; Meyers and Schulz 2009]. The latter would be especially useful
to efficiently solve the kind of volumetric quantization problems
discussed in [Brückler et al. 2022a].
As individual Bi-MDF problems can be solved relatively quickly

and could be extended with warm-start capabilities, we can also see
their use in branch-and-bound schemes to cover more complex con-
straints than already afforded. Support for lazily adding constraints
without full re-solves could be an excellent middle ground between
efficiency and extended constraint support.

7 CONCLUSION
We define the general Bi-MDF optimization problem and explore
novel, simple-to-implement algorithms to solve it both approxi-
mately and exactly.

We then show how different kinds of T-mesh quantization prob-
lems can naturally be expressed as Bi-MDF problems and demon-
strate that this treatment yields high-quality results and favorable
runtime performance compared to more general ILP or IQP solvers.

Such general solvers are an attractive and valuable tool for quickly
modeling optimization problems. However, as we demonstrate, iden-
tifying additional structure and creating specialized solvers allows
for vastly improved performance, enabling the solution of larger
problems with lower resource usage.

Ideally, the identified structure is common enough that the result-
ing methods are useful for a variety of tasks beyond the originally
covered problem. We believe this to be the case with Bi-MDF prob-
lems.

ACKNOWLEDGMENTS
This project has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation programme (Grant agreement No. 853343).
We would further like to thank Seth Pettie for making a scan of

the elusive [Edmonds 1967] available on his website8.

REFERENCES
Ravindra K. Ahuja, J.L. Batra, and S.K. Gupta. A parametric algorithm for convex cost

network flow and related problems. European Journal of Operational Research, 16(2):
222–235, 1984.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Pearson, 1993. ISBN 978-0136175490.

Ravindra K. Ahuja, James B. Orlin, Giovanni M. Sechi, and Paola Zuddas. Algorithms
for the simple equal flow problem. Management Science, 45(10):1440–1455, 1999. doi:
10.1287/mnsc.45.10.1440.

8https://web.eecs.umich.edu/~pettie/matching/

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://web.eecs.umich.edu/~pettie/matching/
https://web.eecs.umich.edu/~pettie/matching/

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 21

Richard P. Anstee. A polynomial algorithm for b-matchings: An alternative approach.
Inf. Process. Lett., 24(3):153–157, 1987. doi: 10.1016/0020-0190(87)90178-5.

Gautam Appa and Balázs Kotnyek. Binet matrices, an extension of network matrices.
Technical report, Computational, Discrete and Applicable Mathematics, London
School of Economics, December 2000. URL http://www.cdam.lse.ac.uk/Reports/
Files/cdam-2000-19.ps.gz.

Gautam Appa, Balázs Kotnyek, Konstantinos Papalamprou, and Leonidas S. Pitsoulis.
Optimization with binet matrices. Oper. Res. Lett., 35(3):345–352, 2007. doi: 10.1016/
j.orl.2006.04.003.

Piotr Berman, Andrew B. Kahng, Devendra Vidhani, and Alexander Zelikovsky. The
t-join problem in sparse graphs: Applications to phase assignment problem in VLSI
mask layout. In Frank K. H. A. Dehne, Arvind Gupta, Jörg-Rüdiger Sack, and Roberto
Tamassia, editors, Algorithms and Data Structures, 6th International Workshop, WADS
’99, Vancouver, British Columbia, Canada, August 11-14, 1999, Proceedings, volume
1663 of Lecture Notes in Computer Science, pages 25–36. Springer, 1999. doi: 10.1007/3-
540-48447-7_3.

Ethan D. Bolker and Thomas Zaslavsky. A simple algorithm that proves half-integrality
of bidirected network programming. Networks, 48(1):36–38, 2006. doi: 10.1002/net.
20117. URL https://doi.org/10.1002/net.20117.

Hendrik Brückler, David Bommes, and Marcel Campen. Volume parametrization
quantization for hexahedral meshing. ACM Trans. Graph., 41(4), jul 2022a. ISSN
0730-0301. doi: 10.1145/3528223.3530123.

Hendrik Brückler, Ojaswi Gupta, Manish Mandad, and Marcel Campen. The 3D Motor-
cycle Complex for Structured Volume Decomposition. Computer Graphics Forum,
2022b. ISSN 1467-8659. doi: 10.1111/cgf.14470.

Marcel Campen, David Bommes, and Leif Kobbelt. Quantized global parametrization.
ACM Trans. Graph., 34(6), October 2015. ISSN 0730-0301. doi: 10.1145/2816795.
2818140.

Beifang Chen. Conformal decomposition of integral flows on signed graphs with
outer-edges. Graphs and Combinatorics, 37(6):2207–2225, Nov 2021. ISSN 1435-5914.
doi: 10.1007/s00373-021-02344-3.

Beifang Chen, Jue Wang, andThomas Zaslavsky. Resolution of indecomposable integral
flows on signed graphs. Discrete Mathematics, 340(6):1271–1286, 2017. ISSN 0012-
365X. doi: https://doi.org/10.1016/j.disc.2016.12.013.

Mattéo Couplet, Maxence Reberol, and Jean-François Remacle. Generation of High-
Order Coarse Quad Meshes on CAD Models via Integer Linear Programming. 2021.
doi: 10.2514/6.2021-2991.

CPLEX. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

George Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In T.J. Koopmans, editor, Activity Analysis of Production and Allocation,
pages 339–347. John Wiley and Sons, 1951.

George B. Dantzig. Linear programming and extensions. Rand Corporation Research
Study. Princeton Univ. Press, Princeton, NJ, 1963.

Balázs Dezso, Alpár Jüttner, and Péter Kovács. LEMON - an open source C++ graph
template library. Electron. Notes Theor. Comput. Sci., 264(5):23–45, 2011. doi: 10.1016/
j.entcs.2011.06.003.

Jack Edmonds and Ellis L. Johnson. Matching: a well-solved class of integer linear
programs. In Combinatorial structures and their applications, pages 89–92, 1970.

Jack R. Edmonds. An introduction to matching. Lecture notes, 1967. URL https:
//web.eecs.umich.edu/~pettie/matching/Edmonds-notes.pdf.

Jack R. Edmonds and Ellis L. Johnson. Matching, euler tours and the chinese postman.
Math. Program., 5(1):88–124, 1973. doi: 10.1007/BF01580113.

David Eppstein, Michael T. Goodrich, Ethan Kim, and Rasmus Tamstorf. Motorcycle
Graphs: Canonical Quad Mesh Partitioning. Computer Graphics Forum, 2008. ISSN
1467-8659. doi: 10.1111/j.1467-8659.2008.01288.x.

Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis Petropolitanae, 8:128–140, 1736.

Lester Randolph Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962. ISBN 9780691651842.

Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph
and bidirected network flow problems. In Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, STOC ’83, page 448–456, New York, NY, USA,
1983. Association for Computing Machinery. ISBN 0897910990. doi: 10.1145/800061.
808776.

John R. Gilbert, Joan P. Hutchinson, and Robert E. Tarjan. A separator theorem for
graphs of bounded genus. Journal of Algorithms, 5(3):391–407, 1984. doi: doi:
10.1016/0196-6774(84)90019-1.

Gurobi Optimizer. Gurobi Optimizer Reference Manual, 2022. URL https://www.gurobi.
com.

Dorit S Hochbaum. Monotonizing linear programs with up to two nonzeroes per
column. Operations Research Letters, 32(1):49–58, 2004.

A.J. Hoffman and J.B. Kruskal. Integral boundary points of convex polyhedra. Linear
Inequalities and Related Systems, 38:223–246, 1956.

Jingwei Huang, Yichao Zhou, Matthias Niessner, Jonathan Richard Shewchuk, and
Leonidas J. Guibas. Quadriflow: A scalable and robust method for quadrangulation.

Computer Graphics Forum, 37(5):147–160, 2018. doi: https://doi.org/10.1111/cgf.
13498.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. Instant
field-aligned meshes. ACM Trans. Graph., 34(6):189:1–189:15, 2015. doi: 10.1145/
2816795.2818078.

Vladimir Kolmogorov. Blossom V: A new implementation of a minimum cost perfect
matching algorithm. Mathematical Programming Computation, 1:43–67, 07 2009.
doi: 10.1007/s12532-009-0002-8.

Balázs Kotnyek. A generalization of totally unimodular and network matrices. PhD
thesis, London School of Economics and Political Science, 2002.

E. Lawler. Combinatorial optimization - networks and matroids. Holt, Rinehart and
Winston, New York, 1976.

Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem.
SIAM Journal on Computing, 9(3):615–627, 1980. doi: 10.1137/0209046.

M. Lyon, M. Campen, and L. Kobbelt. Quad layouts via constrained t-mesh quantization.
Computer Graphics Forum, 40(2):305–314, 2021a. doi: https://doi.org/10.1111/cgf.
142634.

M. Lyon, M. Campen, and L. Kobbelt. Simpler quad layouts using relaxed singularities.
Computer Graphics Forum, 40(5):169–179, 2021b. doi: https://doi.org/10.1111/cgf.
14365.

Max Lyon, David Bommes, and Leif Kobbelt. Cost minimizing local anisotropic quad
mesh refinement. Comput. Graph. Forum, 39(5):163–172, 2020. doi: 10.1111/cgf.14076.

Giorgio Marcias, Kenshi Takayama, Nico Pietroni, Daniele Panozzo, Olga Sorkine-
Hornung, Enrico Puppo, and Paolo Cignoni. Data-driven interactive quadran-
gulation. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH), 34(4):
65:1–65:10, 2015.

Paul Medvedev and Michael Brudno. Maximum likelihood genome assembly. Journal
of Computational Biology, 16(8):1101–1116, 2009. doi: 10.1089/cmb.2009.0047.

Carol A. Meyers and Andreas S. Schulz. Integer equal flows. Operations Research Letters,
37(4):245–249, 2009. ISSN 0167-6377. doi: https://doi.org/10.1016/j.orl.2009.03.006.
URL https://www.sciencedirect.com/science/article/pii/S0167637709000467.

M. Minoux. Solving integer minimum cost flows with separable convex cost objective
polynomially. In Giorgio Gallo and Claudio Sandi, editors, Netflow at Pisa, pages
237–239. Springer, 1986. doi: 10.1007/BFb0121104.

Scott A. Mitchell. High fidelity interval assignment. Int. J. Comput. Geom. Appl., 10(4):
399–415, 2000. doi: 10.1142/S0218195900000231.

Scott A. Mitchell. Simple and fast interval assignment using nonlinear and piecewise
linear objectives. In Josep Sarrate and Matthew L. Staten, editors, Proceedings of the
22nd International Meshing Roundtable, IMR 2013, October 13-16, 2013, Orlando, FL,
USA, pages 203–221. Springer, 2013. doi: 10.1007/978-3-319-02335-9_12.

Scott A. Mitchell. Incremental Interval Assignment by Integer Linear Algebra.
Proceedings of the 29th International Meshing Roundtable, October 2021. doi:
10.5281/zenodo.5559025.

Rolf H. Möhring, Matthias Müller-Hannemann, and Karsten Weihe. Using network
flows for surface modeling. In Kenneth L. Clarkson, editor, Proceedings of the Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1995. San
Francisco, California, USA, pages 350–359. ACM/SIAM, 1995.

Rolf H. Möhring, Matthias Müller-Hannemann, and Karsten Weihe. Mesh refinement
via bidirected flows: Modeling, complexity, and computational results. J. ACM, 44
(3):395–426, May 1997. ISSN 0004-5411. doi: 10.1145/258128.258174.

Matthias Müller-Hannemann and Alexander Schwartz. Implementing weighted b-
matching algorithms: Towards a flexible software design. ACM J. Exp. Algorithmics,
4:7–es, dec 2000. ISSN 1084-6654. doi: 10.1145/347792.347815.

Matthias Müller-Hannemann and Alexander Schwartz. Implementing weighted b-
matching algorithms: Insights from a computational study. ACM J. Exp. Algorithmics,
5:8–es, dec 2001. ISSN 1084-6654. doi: 10.1145/351827.384250.

Ashish Myles and Denis Zorin. Controlled-distortion constrained global parametriza-
tion. ACM Trans. Graph., 32(4):105:1–105:14, 2013. doi: 10.1145/2461912.2461970.

Ashish Myles, Nico Pietroni, and Denis Zorin. Robust field-aligned global parametriza-
tion. ACM Trans. Graph., 33(4):135:1–135:14, 2014. doi: 10.1145/2601097.2601154.

Matthias Müller–Hannemann. High quality quadrilateral surface meshing without
template restrictions: A new approach based on network flow techniques. Interna-
tional Journal of Computational Geometry & Applications, 10(03):285–307, June 2000.
ISSN 0218-1959, 1793-6357. doi: 10.1142/S0218195900000176.

Stefano Nuvoli, Alex Hernandez, Claudio Esperança, Riccardo Scateni, Paolo Cignoni,
and Nico Pietroni. Quadmixer: layout preserving blending of quadrilateral meshes.
ACM Trans. Graph., 38(6):180:1–180:13, 2019. doi: 10.1145/3355089.3356542. URL
https://doi.org/10.1145/3355089.3356542.

James B. Orlin. A polynomial time primal network simplex algorithm for minimum
cost flows. Math. Program., 77:109–129, 1997. doi: 10.1007/BF02614365.

Chi-Han Peng, Michael Barton, Caigui Jiang, and Peter Wonka. Exploring quadrangu-
lations. ACM Trans. Graph., 33(1), Feb 2014. ISSN 0730-0301. doi: 10.1145/2541533.

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini.
Reliable feature-line driven quad-remeshing. ACM Trans. Graph., 40(4), July 2021.
ISSN 0730-0301. doi: 10.1145/3450626.3459941.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

http://www.cdam.lse.ac.uk/Reports/Files/cdam-2000-19.ps.gz
http://www.cdam.lse.ac.uk/Reports/Files/cdam-2000-19.ps.gz
https://doi.org/10.1002/net.20117
https://web.eecs.umich.edu/~pettie/matching/Edmonds-notes.pdf
https://web.eecs.umich.edu/~pettie/matching/Edmonds-notes.pdf
https://www.gurobi.com
https://www.gurobi.com
https://www.sciencedirect.com/science/article/pii/S0167637709000467
https://doi.org/10.1145/3355089.3356542

22 • Martin Heistermann, Jethro Warnett, and David Bommes

William Pulleyblank. Edmonds, matching and the birth of polyhedral combinatorics.
Documenta Mathematica, 01 2012.

William R. Pulleyblank. Faces of Matching Polyhedra. PhD thesis, University ofWaterloo,
Waterloo, Canada, 1973.

Faniry H. Razafindrazaka and Konrad Polthier. Optimal base complexes for quadrilateral
meshes. Comput. Aided Geom. Des., 52:63–74, 2017. doi: 10.1016/j.cagd.2017.02.012.

Faniry H. Razafindrazaka, Ulrich Reitebuch, and Konrad Polthier. Perfect matching
quad layouts for manifold meshes. Comput. Graph. Forum, 34(5):219–228, 2015. doi:
10.1111/cgf.12710.

Kenshi Takayama, Daniele Panozzo, and Olga Sorkine-Hornung. Pattern-Based Quad-
rangulation for N-Sided Patches. Computer Graphics Forum, 2014. ISSN 1467-8659.
doi: 10.1111/cgf.12443.

T. K. H. Tam and Cecil G. Armstrong. Finite-element mesh control by integer program-
ming. International Journal for Numerical Methods in Engineering, 36:2581–2605,
1993.

Marco Tarini. Closed-form quadrangulation of n-sided patches. Computers & Graphics,
107:60–65, 2022. ISSN 0097-8493. doi: https://doi.org/10.1016/j.cag.2022.06.015.

Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of 10, 000 3d-printing models.
CoRR, abs/1605.04797, 2016. URL http://arxiv.org/abs/1605.04797.

A T-MESH ADAPTATION AND RE-EMBEDDING

1

1

0

2

0

2

4

1

0

2

3

1

2

1

(0)

1

1

0

2

0

2

4

1

0

2

3

1

2

1

(1)

6

7

1

1

0

2

0

2

4

(2-3)

1

1

0

2

0

2

1

3

(4)

1

1

0

4

1

3

(5)

Fig. 19. T-mesh adaptation for a half-arc quantization: (0) A half-arc quan-
tization with two overlapping paths (blue and orange). (1) The paths are
combined into one path (green); only the bold sub-path needs correction.
(2-3) The half-arc quantization of the left side gives an initial arc quantiza-
tion; T-junctions are removed from the right-hand-side and subjects are left
dangling, with target information (red) for their future location on the path.
(4) An arc is split to create a nodes for the subjects’ targets, subjects are
re-connected with new T-junctions. (5) Valence-2 nodes collapse yields the
final arc-quantized T-mesh.

Formally, we consider an embedding 4 of a manifold T-Mesh
) = (V,A,P) into a manifold triangular base mesh" = (+ , �,))
a pair of functions 40 : A → ∪∞

8=0�
8 and 4E : V → + that map T-

mesh vertices to mesh vertices and T-mesh arcs to simple mesh edge
paths. The embedding of a T-mesh arc 0 may only be the empty
tuple if a quantization @ : A → N0 exists and @(0) = 0. If the
embeddings 40 (08), 40 (0 9) of T-mesh arcs 08 , 0 9 are incident to the
same mesh vertex E , both 08 and 0 9 must be incident to a T-mesh
node = with 4E (=) = E . Additionally, E must be an endpoint of both
the embeddings.
We start out with a T-mesh) with a valid half-arc quantization

� : H → N0 and an embedding 4 into" , and compute a modified
T-mesh) ′ with an arc quantization @ : A → N0 and an embedding
4′ into "′, which is a refinement of " . Our algorithm iteratively

processes each trace, adapting the T-mesh and its embedding simul-
taneously, while constructing an arc quantization. We illustrate the
T-mesh adaptation steps on an example in Figure 19.

(1) Each pair of overlapping paths is replaced by a longer directed
path that contains the arcs of either path. This way, any half-
arc not contained in more than one trace. For every path,
we now analyze the half-arc quantization of its right-hand-
side, extracting the shortest sub-path that requires correction:
At the beginning and end, the half-arc quantization may al-
ready agree with the arc quantization and does not require
correction. This may result in an empty sub-path, meaning
no correction is required at all. For the remaining sub-path,
T-junctions will have to be shifted along the path, such that
the half-arc quantization agrees with the arc quantization.

(2) We initialize the arc quantisation @ as follows: Every arc that
is not contained in a path gets assigned its length from the
halfarc quantization (for a valid quantization, the quantization
of both of its half-arcs has to agree). For every half-arc ℎ in a
path, its arc 0(ℎ) is assigned the quantized length of ℎ. The
result is that for every path, its left-hand-side is properly arc
quantized, only its right-hand side may need correction.

(3) We remove all T-junctions from the right-hand side. The T-
mesh arcs that formed these T-junctions – denoted subjects –
are now “dangling” with only one node. We endow these sub-
jects with a target value (cumulative sum of right-hand-side
half-arc quantization values along the trace up to the subject’s
former T-junction) which determines the location of their fu-
ture T-junction. We then iterate along the sub-path, keeping a
cumulative sum of arc quantization values, whichwe compare
to the subject targets to compute positions of new right-hand-
side T-junctions. If there is no node where a new T-junction
should be (i.e., inside an arc with a arc-quantization greater
than one), we split this arc to introducing new T-mesh nodes.
We also have to update the arc quantization to distribute the
quantized length of the original arc among the resulting new
arcs. In addition, we have to embed new arcs by splitting the
arc embedding path. If there is no sufficient number of mesh
vertices along the embedding of the original arc, we perform
edge splits on the triangle mesh to create them. Now the
dangling subject arcs are connected to their corresponding
nodes in the sub-path, forming new T-junctions.

(4) To create new embeddings for the subject arcs, we consider
the simply-connected triangle mesh region ' incident to the
right-hand-side of the sub-path, bounded by the embeddings
of any arcs that are not subjects, including the arcs of the path
itself. This boundary is not considered part of '. Starting at
one end of the sub-path, we iteratively re-embed the subjects
by computing a triangle mesh path inside ' that leads from
the embedding vertex of their non-T-junction node to the em-
bedding vertex of the newly created T-junction. We compute
this path using Dijkstra’s algorithm. We may have to perform
local face splits to accommodate this path, as the T-junction
may not be reachable without using boundary edges of ' that
are already used by the embeddings of other arcs. Finally, we
split ' using the new embedding path, ensuring that path

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

http://arxiv.org/abs/1605.04797

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 23

computations for the remaining subjects cannot cross paths
of already re-embedded subjects.

(5) Finally, we collapse valence-2 T-mesh nodes in the sub-path
by merging the arcs and their embeddings.

The resulting topological T-mesh result is independent of trace pro-
cessing order, its embedding however is not. While the embedding
is always valid, the very local geometric operations can result in
significant distortion if the half-arc quantization was “far” from an
arc quantization, thus re-parameterization and smoothing steps will
be beneficial for many downstream applications.

B ALGORITHMS
Input :Vertices + ,

Forest edges � ,
Odd vertex set) (with |) | even)

Output : � : Set of edges, such that the degree of E in (+ , �) is
odd iff E ∈)

1 � ← ∅
2 forall E ∈ + do
3 visited[E] ← false
4 odd[E] ← (E ∈))
5 end
6 procedure Process(E)
7 if visited[E] then
8 return
9 visited[E] ← true
10 forall 4 = {E,F} ∈ � do
11 Process(F)
12 if odd[F] then
13 � ← � ∪ {4}
14 odd[E] ← ¬(odd[E])
15 end
16 end

17 forall E ∈ + do
18 Process(E)
19 end
20 return �

Algorithm 1.) -joins as unique subgraph of spanning forest

Input :non-zero implication graph �1 = (#1, �1),
non-zero arcs A1,non-zero pathsM1,
T-mesh sides S, side target lengths ℓ

Output :Constraint set � ⊆ S ∪ A
1 function Try-Cover(=)
2 if = ∉ #1 then
3 return false
4 A ← Depth-First-Search(�1, n).visited
5 �1 ← �1 − A // Remove covered nodes

6 if A ∩M1 ≠ ∅ then
7 M1 ←M1 − A
8 return true
9 return false

10 � ← A1

11 forall 0 ∈ A1 do
12 Try-Cover(a)
13 end
14 forall B ∈ S by decreasing ℓ (B) do
15 ifM1 = ∅ then
16 return
17 if Try-Cover(a) then
18 � ← � ∪ {0}
19 end
20 return �

Algorithm 2. Computation of greedy min-one constraints from non-zero
path constraints

(a) IQP (b) Ours

(c) IQP, no alignment (d) Ours, no alignment

Fig. 21. On sharp-sphere, enablingQuadWild’s alignment term has neg-
ative impact on geometric quality while failing to produce a coarse base
complex (cf. Table 2).

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

24 • Martin Heistermann, Jethro Warnett, and David Bommes

C ADDITIONAL EVALUATION RESULTS
Table 1. Number of base complex faces and runtimes for coarse quad layouts
with angle-thresholded quantization on simple meshes.

ATQ Ours, greedy Ours, half-arc q.

U #��� C@ [ms] #��� C@ [ms] #��� C@ [ms]

qadwild-300/Organic/duck
10◦ 459 128 1047 169 351 195
20◦ 292 66 444 57 253 90
35◦ 136 23 143 19 106 61
45◦ 109 15 127 19 77 56
qadwild-300/Organic/elk
10◦ 685 266 817 264 424 381
20◦ 295 120 450 108 240 194
35◦ 176 59 225 46 165 118
45◦ 144 51 191 36 126 106
qadwild-300/Organic/fertility
10◦ 365 234 549 249 306 539
20◦ 186 94 227 113 153 170
35◦ 123 55 153 41 114 112
45◦ 119 34 145 31 103 94
qadwild-300/Organic/bunny
10◦ 583 223 910 201 436 301
20◦ 277 98 444 83 202 120
35◦ 138 53 215 43 111 86
45◦ 117 54 167 33 93 102
qadwild-300/Organic/kitten
10◦ 692 187 1226 167 420 209
20◦ 376 87 698 98 236 117
35◦ 138 34 252 36 132 61
45◦ 112 41 206 22 95 56
qadwild-300/Mechanical/sculpt
10◦ 454 97 625 107 256 117
20◦ 214 53 230 41 119 58
35◦ 75 22 83 14 54 44
45◦ 57 16 79 11 43 43

Table 2. QuadWild results for a selection of meshes taken from Figure 26
of [Pietroni et al. 2021]. The column #i shows the number of invalid faces
(MSJ < 0), MSJ mean is computed only among valid elements.

MSJ

#� #��� #i min. mean time [s]

qadwild-300/Mechanical/ujoint
IQP 4537.0 686 0 0.53 0.96 0.102
IQP (full) 4537.0 686 0 0.53 0.96 0.588
Ours 4537.0 686 0 0.53 0.96 0.006
IQP (+align) 4457.0 183 0 0.48 0.96 0.222
Ours (+align) 4865.0 10 0 0.60 0.95 0.010

qadwild-300/Mechanical/sculpt
IQP 4095.0 1875 0 0.44 0.91 0.719
IQP (full) 4095.0 1875 0 0.44 0.91 1.939
Ours 4095.0 1875 0 0.44 0.91 0.005
IQP (+align) 4151.0 809 0 0.44 0.89 1.458
Ours (+align) 3974.0 460 0 0.42 0.88 0.022

qadwild-300/Mechanical/bolt
IQP 3885.0 468 0 0.62 0.95 4.936
IQP (full) 3885.0 468 0 0.62 0.95 15.45
Ours 3885.0 468 0 0.62 0.95 0.004
IQP (+align) 3862.0 166 0 0.62 0.95 0.331
Ours (+align) 3862.0 156 0 0.65 0.95 0.006

qadwild-300/Mechanical/gear
IQP 4961.0 1489 0 0.40 0.95 19.92
IQP (full) 4965.0 1495 0 0.40 0.95 201.6
Ours 4965.0 1495 0 0.40 0.95 0.009
IQP (+align) 5099.0 1507 0 0.40 0.95 16.33
Ours (+align) 5104.0 1514 0 0.40 0.95 0.016

qadwild-300/Mechanical/sharp_sphere10k
IQP 5950.0 5664 0 0.33 0.89 4.951
IQP (full) 5950.0 5664 0 0.33 0.89 76.48
Ours 5950.0 5664 0 0.33 0.89 0.016
IQP (+align) 5768.0 5338 0 0.23 0.87 4.939
Ours (+align) 6171.0 5607 0 0.04 0.89 0.032

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

Min-Deviation-Flow in Bi-directed Graphs for T-MeshQuantization • 25

Table 3. Quadwild examples for a selection of meshes taken from Figure 24
of [Pietroni et al. 2021]

MSJ
#� #��� #i min. mean time [s]

qadwild-300/Mechanical/bearing_plate
IQP 6474.0 1342 0 0.31 0.94 4.919
IQP (full) 6474.0 1342 0 0.31 0.94 288471
Ours 6474.0 1342 0 0.31 0.94 0.026
IQP (+align) 6448.0 1765 1 -0.06 0.93 10.17
Ours (+align) 6451.0 1967 0 0.27 0.92 0.118

qadwild-300/Mechanical/mid2Fem
IQP 8109.0 4299 0 0.20 0.96 11.20
IQP (full) 8109.0 4299 0 0.20 0.96 317869
Ours 8109.0 4299 0 0.20 0.96 0.025
IQP (+align) 8017.0 2490 0 0.07 0.95 9.752
Ours (+align) 8406.0 2608 0 0.03 0.95 0.033

qadwild-300/Mechanical/lego
IQP 32323.0 9551 0 0.41 0.96 19.95
IQP (full) 32259.0 8741 0 0.42 0.96 109589
Ours 32259.0 8741 0 0.42 0.96 0.026
IQP (+align) 31936.0 7442 0 0.43 0.96 19.95
Ours (+align) 32842.0 9084 0 0.36 0.96 0.098

qadwild-300/Mechanical/blech
IQP 22955.0 10770 0 0.30 0.97 9.923
IQP (full) 22953.0 10502 0 0.30 0.97 121650
Ours 22953.0 10502 0 0.30 0.97 0.022
IQP (+align) 23181.0 7398 0 0.07 0.95 9.946
Ours (+align) 22589.0 8815 2 -0.03 0.96 0.076

qadwild-300/Mechanical/mechanical02
IQP 3781.0 539 0 0.44 0.93 3.662
IQP (full) 3781.0 539 0 0.44 0.93 11.43
Ours 3781.0 539 0 0.44 0.93 0.009
IQP (+align) 3775.0 311 0 0.44 0.93 0.965
Ours (+align) 3506.0 356 0 0.44 0.92 0.012

qadwild-300/Mechanical/mechanical05
IQP 8085.0 1421 0 0.33 0.93 4.941
IQP (full) 8058.0 1376 0 0.33 0.93 246236
Ours 8058.0 1376 0 0.33 0.93 0.038
IQP (+align) 7887.0 1191 0 0.34 0.94 4.935
Ours (+align) 8071.0 1247 0 0.38 0.93 0.121

qadwild-300/Mechanical/mechanical08
IQP 5796.0 1 0 0.87 0.96 0.022
IQP (full) 5796.0 1 0 0.87 0.96 0.238
Ours 5796.0 1 0 0.87 0.96 0.006
IQP (+align) 5796.0 1 0 0.87 0.96 0.020
Ours (+align) 5796.0 1 0 0.87 0.96 0.004

qadwild-300/Mechanical/joint
IQP 4213.0 187 0 0.42 0.97 0.442
IQP (full) 4213.0 187 0 0.42 0.97 1.407
Ours 4213.0 187 0 0.42 0.97 0.007
IQP (+align) 4232.0 174 0 0.42 0.97 0.188
Ours (+align) 4069.0 281 0 0.02 0.97 0.008

qadwild-300/Mechanical/bamboo_pen
IQP 10073.0 2279 2 -0.15 0.94 2.941
IQP (full) 10073.0 2279 2 -0.15 0.94 17.15
Ours 10073.0 2035 2 -0.33 0.94 0.012
IQP (+align) 10078.0 2634 3 -0.33 0.94 1.502
Ours (+align) 10118.0 1073 3 -0.40 0.94 0.025

Table 4. Quadwild examples for a selection of meshes taken from Figure 25
of [Pietroni et al. 2021]

MSJ
#� #��� #i min. mean time [s]

qadwild-300/Mechanical/delta_arm_base
IQP 12131.0 3133 0 0.36 0.96 59.92
IQP (full) 12040.0 3920 0 0.41 0.96 115097
Ours 12040.0 3920 0 0.41 0.96 0.013
IQP (+align) 11914.0 2885 0 0.34 0.96 59.87
Ours (+align) 11116.0 2165 0 0.41 0.94 0.029

qadwild-300/Mechanical/rod
IQP 3915.0 2093 0 0.21 0.94 0.316
IQP (full) 3915.0 2093 0 0.21 0.94 1.209
Ours 3915.0 2093 0 0.21 0.94 0.004
IQP (+align) 3740.0 1648 0 0.33 0.94 0.290
Ours (+align) 4473.0 274 0 0.10 0.94 0.014

qadwild-300/Mechanical/rolling_stage100K
IQP 7873.0 2022 0 0.51 0.95 29.90
IQP (full) 7873.0 2022 0 0.51 0.95 100970
Ours 7873.0 2022 0 0.51 0.95 0.016
IQP (+align) 7762.0 1053 0 0.51 0.95 30.55
Ours (+align) 7872.0 959 0 0.52 0.95 0.055

qadwild-300/Organic/3_holes
IQP 5038.0 503 0 0.61 0.94 1.326
IQP (full) nan nan 0 0.61 0.94 3.988
Ours 5038.0 503 0 0.61 0.94 0.006
IQP (+align) 5127.0 693 0 0.60 0.94 1.441
Ours (+align) 4941.0 693 0 0.59 0.94 0.007

qadwild-300/Mechanical/aircraft
IQP 5859.0 1553 1 -0.73 0.93 19.89
IQP (full) 5860.0 1476 2 -0.38 0.93 6561
Ours 5860.0 1476 2 -0.38 0.93 0.018
IQP (+align) 5637.0 973 2 -0.38 0.93 9.934
Ours (+align) 5739.0 878 2 -0.72 0.92 0.032

qadwild-300/Mechanical/sydney
IQP 6095.0 728 0 0.20 0.93 4.935
IQP (full) 6095.0 728 0 0.20 0.93 38.58
Ours 6095.0 728 0 0.20 0.93 0.017
IQP (+align) 5900.0 536 1 -0.47 0.92 4.963
Ours (+align) 6170.0 626 0 0.19 0.93 0.034

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

	Abstract
	1 Introduction
	1.1 The T-mesh quantization problem
	1.2 Min-deviation quantization as ILP
	1.3 Min-deviation quantization as flow problem
	1.4 Min-deviation quantization as bi-directed flow problem
	1.5 Overview

	2 Related Work
	2.1 Patch layout quantization for quad meshing
	2.2 Solving Bi-MCF and b-matching problems
	2.3 Contributions

	3 Flows in bi-directed networks
	3.1 Bi-directed networks
	3.2 Flows in bi-directed networks
	3.3 Bi-directed minimum-cost flow
	3.4 Bi-directed minimum-deviation flow
	3.5 Reducing Bi-MDF to Bi-MCF
	3.6 Bi-MCF and Bi-MDF approximation via double cover
	3.7 Exact Bi-MDF solutions by iterated refinement using b-matching
	3.8 Reducing b-Matching to Matching
	3.9 Exact solution by iterative refinement
	3.10 Bi-MDF simplification

	4 Modeling Quantization as Bi-MDF Problem
	4.1 Preliminaries
	4.2 Quadrangular T-meshes
	4.3 Half-arc quantization
	4.4 Polygonal T-meshes

	5 Evaluation
	5.1 Implementation notes
	5.2 Benchmark setup
	5.3 Quadrangular T-mesh quantization
	5.4 Polygonal T-mesh quantization
	5.5 Bi-MDF solver variants and parameters

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References
	A T-Mesh adaptation and re-embedding
	B Algorithms
	C Additional Evaluation Results

